Quels rendements demain ? Perspectives d'évolution des rendements des grandes cultures : le cas du blé

Les politiques nationales d'adaptation à la réforme de la PAC : uniformisation des instruments, diversification des politiques

N° 8 Septembre 1998
NOTES ET ÉTUDES ÉCONOMIQUES

AVERTISSEMENT

Les textes ci-après doivent être considérés comme des documents de travail. Ils n'engagent que leurs auteurs.
EDITORIAL

Dans ce huitième numéro de Notes et Etudes Economiques, nous publions une partie d’une étude commandée en 1995 par la Direction des Affaires Financières et Economiques sur les perspectives d’évolution de l’agriculture française. Cette étude, réalisée par Sylvie Bonny, chercheuse à l’Institut National de la Recherche Agronomique, a été utilisée dans les travaux de prospective préparatoires à la loi d’orientation agricole. L’extrait publié dans ce numéro concerne les perspectives d’évolution des rendements des grandes cultures en France, et plus particulièrement le cas du blé. Aujourd’hui on pourrait considérer que la question d’une amélioration des rendements n’est plus d’actualité. En effet les objectifs d’autosuffisance ont été largement dépassés, l’Europe est devenue un des premiers exportateurs mondiaux et les possibilités d’extension des marchés mondiaux ne semblent pas aussi prometteuses qu’on pouvait le penser il y a peu. L’heure n’est donc plus à la recherche d’une croissance de la production agricole à tout prix. Néanmoins, dans une réflexion prospective, il importe de dépasser les préoccupations de court terme et de prendre en considération l’évolution des besoins alimentaires de la planète qui vont découler de l’accroissement de la population. Même dans une optique plus immédiate, les décisions prochaines sur la réforme de la PAC devront s’appuyer sur une bonne évaluation des tendances à l’œuvre au niveau de la production. Le texte de Sylvie Bonny, qui rassemble toutes les données scientifiques les plus récentes sur la question, mérite donc d’être porté à la connaissance du public.

LES AUTEURS

Sylvie BONNY est chargée de recherches au département d’économie et sociologie rurales de l’Institut national de la Recherche Agronomique (Station d’économie et sociologie rurales, Grignon).

Hélène DELORME est directeur de recherches à la Fondation Nationale des Sciences Politiques (Centre d’Etudes et de Recherches Internationales - CERI).

Virginie GUICHARD est doctorante à l’Université de Paris X - Nanterre (Laboratoire « Dynamiques sociales et recomposition des espaces ») ; dans le cadre de la convention d’études qui a régi ces travaux, elle a travaillé au sein de l’équipe FNSP-INRA constituée par Mme Hélène Delorme et M. Daniel Perraud.

Daniel PERRAUD est directeur de recherches au département d’économie et sociologie rurales de l’Institut National de la Recherche Agronomique (Station d’Économie et sociologie rurales de Grenoble).
QUELS RENDEMENTS DEMAIN ?
PERSPECTIVES D'ÉVOLUTION DES RENDEMENTS
DES GRANDES CULTURES : LE CAS DU BLÉ.

Sylvie BONNY

Institut National de la Recherche Agronomique
Économie et Sociologie Rurales
Grignon
Cet article est issu d'une étude réalisée dans le cadre d'une convention entre l'INRA et le Ministère de l'Agriculture et de la Pêche, DAFE/SDEPE/BEP (Programme 95.E1.01.01). L'étude a été achevée en janvier 1997, mais certaines parties ont été réactualisées début 1998 pour cette publication.

L'auteur remercie les chercheurs interrogés sur les perspectives des rendements du blé, ainsi que tous ceux qui lui ont fourni diverses informations en ce domaine.
QUELS RENDEMENTS DEMAIN ?
PERPECTIVES D’ÉVOLUTION DES RENDEMENTS DES GRANDES CULTURES
EN FRANCE : LE CAS DU BLE

INTRODUCTION

Les rendements des cultures n’ont pas cessé de croître depuis deux siècles, avec une forte accélération à partir de 1950 (fig. 1). Cette progression va-t-elle perdurer ? Ou bien va-t-il y avoir un inflexissement se traduisant par une croissance plus faible des rendements à l’avenir ? S’approche-t-on d’une limite biologique ou d’une asymptote et dans ce cas quel est le rendement maximum possible ?

Fig. 1 - Évolution du rendement du blé depuis 1815 en France (q/ha) (d’après les données du SCEES).

Pour un grain semé, les céréales rendaient en moyenne 3 grains à la récolte en 1200, 4,3 entre 1300 et 1500, 6,3 entre 1500 et 1800. En 1996, on peut dire que le rendement est de 35 à 40 grains pour un grain semé.

Cette question des perspectives d’évolution des rendements en particulier céréaliers est fréquemment posée pour de nombreuses raisons : « capacité de la planète » à nourrir la population mondiale en croissance, possibilité pour la France d’être fortement exportatrice de céréales demain, compétitivité sur les marchés mondiaux, interrogations sur un inflexissement éventuel de la progression des rendements car on s’approcherait des limites biophysiques, conditions de durabilité de niveaux élevés de rendement, recherche de moyens de maîtrise de la production ou au contraire de son accroissement, etc.

Dans un premier temps, cette question sera abordée ici dans le cas des rendements céréaliers en France, toutefois divers autres pays seront aussi évoqués. L’analyse sera axée sur le blé, mais le cas de diverses autres céréales et parfois d’autres grandes cultures sera aussi abordé. Le choix du blé s’explique par son importance économique en France, dans les échanges mondiaux et en matière alimentaire à l’échelle planétaire.
La première question préalable à se poser est celle de la pertinence de cette interrogation en France. Le rendement par hectare est en effet la productivité partielle d’un facteur de production, la terre, qui n’en est qu’un parmi d’autres : c’est surtout la productivité du travail qui est recherchée. Toutefois la question est pertinente parce que la terre est bien un facteur rare dont il faut améliorer la productivité, rare non pas certes en France actuellement, mais pour l’ensemble de la planète compte tenu des prévisions de croissance démographique et de la quantité de terres arables disponibles dans certains pays. En effet peu de nouvelles terres pourront être mises en culture dans les prochaines années et décennies, au contraire certains sols pourraient devenir impropre à la culture en raison de l’érosion, de leur salinisation ou de leur latéritisation ; par ailleurs l’emprise des villes et des infrastructures de transport s’étend et grignote de bonnes terres. De ce fait dans l’avenir, l’augmentation de la production agricole nécessaire en raison notamment de la croissance de la population devrait être obtenue en grande partie par la croissance des rendements. S’interroger sur la productivité de la terre est donc une question utile et fort importante.

La deuxième remarque préalable est que d’autres facteurs de production sont employés. Si le rendement par ha a fortement augmenté, c’est parce qu’on a utilisé davantage d’intrants, de capital, d’énergie et surtout d’information (i.e. de connaissances scientifiques et techniques) par hectare. Il est nécessaire de prendre en compte l’évolution de l’emploi de ces divers moyens de production et ses conséquences.

Le niveau de rendement est déterminé par de nombreux facteurs eux-mêmes soumis à de nombreuses déterminations et à des possibilités de variations sensibles et d’incertitude (figure 2) :
- le progrès scientifique et technique,
- les comportements des agriculteurs,
- la surface et le capital disponible par actif agricole,
- les perspectives de la demande mondiale et des marchés internationaux,
- l’évolution de la demande, notamment intérieure (avec une certaine différenciation des caractéristiques de qualité recherchées),
- les modifications envisageables en matière de politique agricole commune,
- l’évolution des réglementations à prévoir à partir des négociations de l’OMC,
- les tendances des prix des céréales et des intrants,
- les pressions sociales pour une moindre pollution (ou autre),
- les réglementations environnementales.

On notera que de nombreux acteurs sont impliqués : agriculteurs, consommateurs, recherche publique, agrofournitures, pouvoirs publics, organisations internationales, citoyens, etc. Ce ne sont pas de surcroît des groupes homogènes, au contraire ils souvent partagés entre diverses options.

Les limites à la croissance des rendements peuvent de ce fait avoir diverses origines :
- des phénomènes de nature physique ou biologique. Par exemple l’énergie fixée dans la biomasse des végétaux provenant de la transformation de l’énergie solaire reçue sur terre, y a-t-il des facteurs limitant cette conversion ?
- des contraintes d’ordre climatique ou du milieu, ne pouvant être levées à un coût acceptable (par exemple le besoin en eau ou telle température à certains moments du cycle physiologique) ;
- des considérations économiques faisant qu’il n’est pas rentable de produire plus à l’hectare ;
- des aspects scientifiques et techniques : manque de connaissance sur les moyens de produire davantage. On bien, si elles existent, non diffusion de celles-ci aux agriculteurs ou difficultés à les mettre en œuvre ;
- des considérations environnementales, si l’accroissement de productivité venait à détruire rapidement le milieu ; la viabilité et la reproductibilité des techniques agricoles sont importantes à prendre en compte ;

Notes et études économiques n° 8, septembre 1998
- des phénomènes socio-économiques : absence d'incitations à produire davantage, obstacles à la mise en pratique des moyens d'accroître le rendement, par exemple si les intrants sont trop coûteux.

Dans ce texte, après quelques rappels sur la notion de rendements décroissants et sur le progrès technique (I) on abordera plus particulièrement les aspects suivants :

- quel est le rendement maximum potentiel des cultures, notamment du blé (II) ?
- d'où proviennent les écarts entre rendements observés et rendements maximums potentiels (III) ?
- peut-on accroître les rendements sans dégrader l'environnement (IV) ?
- la croissance des rendements demeure-t-elle l'objectif essentiel des agriculteurs (V) ?
- quelles perspectives sont envisageables pour l'évolution future des rendements (VI) ?

Fig.2 - Aperçu des principaux facteurs agissant sur le rendement d'une culture comme le blé
(Schéma partiellement inspiré par J.M. Nolot, INRA Agronomic)
Chapitre I - QUELQUES RAPPELS SUR LA NOTION DE RENDEMENTS DÉCROISSANTS ET SUR LE PROGRÈS TECHNIQUE.

Le fait que le rendement des cultures ne pourra pas indéfiniment croître même si l’on apporte davantage d’intrants par ha est fréquemment associé à « la loi des rendements décroissants », ou bien à l’optimum économique du producteur. On analysera dans un premier temps en quoi ces notions interviennent dans le phénomène étudié ; puis on s’interrogera sur le contenu et les limites du progrès technique.

La « loi des rendements décroissants » et l’optimum économique du producteur.

Dans la théorie économique on parle précisément de loi des rendements décroissants : est-ce à dire que le rendement des cultures devrait inéluctablement baisser ? C’est Ricardo notamment qui énonça en 1815 dans son « Essai sur l’influence des bas prix des grains sur les profits du capital » et son « Essai sur le bas prix du blé » « the law of diminishing returns », mais Turgot l’avait déjà formulée en 1766 dans ses « réflexions sur la formation et la distribution des richesses », et elle fut aussi énoncée par J. Stuart Mill. Dans leur approche la mise en culture des terres – par hypothèse de moins en moins fertiles car on cultive d’abord les bonnes terres – entraîne une baisse des rendements moyens et les subsistances sont obtenues à un coût croissant. Toutefois cette loi ne vise pas spécifiquement le rendement de la terre mais l’évolution de la productivité marginales de tout facteur de production : pour un état donné des techniques, si l’on utilise une quantité croissante d’un facteur de production, tous les autres facteurs étant fixes, l’augmentation de production due à une unité supplémentaire de facteur (i.e. la productivité marginale) qui est d’abord croissante, finit par décroître à partir d’un certain niveau de production (cf. encadré où nous rappelons une des notions de base de la théorie néoclassique). Ainsi c’est la productivité marginale du facteur utilisé qui est décroissante, non la production totale à l’hectare (le rendement). Mais si on considère que des terres de moins en moins fertiles doivent être mises en culture dans certaines régions pour faire face à la poussée démographique, là c’est bien le rendement de la terre qui est décroissant puisque c’est la terre qui est alors le facteur pris en compte.

Rappel sur les fonctions de production dans le cadre de la théorie néoclassique

Considérons une fonction de production à un facteur et mentionnons les différentes zones de production (cf. schéma) :

1) dans une 1ère phase la production augmente plus que proportionnellement aux adjonctions de nouvelles unités du facteur de production ; on est en phase de productivité marginale croissante (rendements croissants).

2) puis la productivité marginale passe par un maximum et décroît. On est en phase de productivité marginale décroissante, de rendements décroissants précisément : la production totale augmente moins que proportionnellement aux adjonctions de nouvelles unités de facteur.

Dans cette zone, on peut distinguer 2 parties :

2a) au début une unité supplémentaire de facteur apporte davantage en terme d’accroissement de production que ce qu’apportent en moyenne les unités déjà utilisées : ajouter une unité de facteur augmente la productivité moyenne, cette dernière est donc croissante comme la productivité marginale lui est supérieure.

Mais à un certain niveau, une unité additionnelle de facteur apporte autant que les doses précédentes en moyenne : la productivité marginale égale alors la productivité moyenne.

2b) l’ajout d’une unité supplémentaire de facteur entraîne un accroissement marginal de la production moindre que celui qu’ont apporté en moyenne les unités déjà utilisées : la productivité marginale est devenue inférieure à la productivité moyenne, ce qui fait que la productivité moyenne diminue.

3) dans une dernière phase l’excès d’apport devient néfaste, la productivité marginale devient négative et la production baisse.
Représentation d'une fonction de production à un facteur et de l'évolution des productivités

Zone 1 : productivity marginale croissante et productivity marginale > productivity moyenne > « rendements croissants »

Zone 2a : productivity marginale décroissante et productivity marginale > productivity moyenne > « rendements décroissants »

Zone 2b : productivity marginale décroissante et productivity marginale < productivity moyenne >

Zone 3 : productivity marginale négative : la production baisse.
Dans ce cadre schématique, à quel niveau de production et d’emploi de facteur doit se situer le producteur cherchant à maximiser son revenu ?

Tant que la productivité marginale est supérieure à la productivité moyenne il a intérêt à accroître la production car chaque dose nouvelle augmente la productivité moyenne des doses déjà utilisées. Il est donc souhaitable d’atteindre au moins la productivité moyenne maximale (point C et C’ de la figure), car auparavant le facteur fixe considéré (la terre par exemple) est sous-employé.

L’optimum se situe donc en zone de « rendements décroissants » (2b). Il est déterminé au niveau micro-économique en fonction du rapport entre le prix du produit et celui du facteur. Tant qu’une unité du facteur supplémentaire accroît plus les recettes que les coûts, le producteur a intérêt à augmenter son emploi : l’optimum est atteint quand la recette marginale est égale au coût marginal du facteur.

Rappel de la démonstration pour déterminer l’optimum micro-économique.

Soit
\[R = \text{marge brute à l’hectare} \]
\[y = \text{produit en quantité} = f(x) \]
\[p = \text{prix unitaire du produit} \]
\[x = \text{facteur (en quantité)} \]
\[c = \text{coût unitaire du facteur (son prix)} \]
\[K = \text{charges fixes} \]

On a :
\[R = p \cdot y - c \cdot x - K \]
\[\text{maximum } R(x) = 0 \]
\[\Rightarrow f'(x) \cdot p - c = 0 \quad \text{si le prix } p \text{ du produit est constant} \]
\[\Rightarrow f'(x) \cdot p = c \quad \text{ou } f'(x) = c/p \]

\[\text{Or } f'(x) \cdot p = \text{recette marginale (productivité marginale en valeur du facteur, i.e. supplément de produit procuré par une unité de facteur, multiplié par le prix du produit), et } c = \text{prix du facteur} \]

Soit :
\[\text{recette marginale (productivité marginale en valeur du facteur) = prix du facteur} \]

Si le rapport entre le prix du produit et celui du facteur diminue (p/c baisse), pour maintenir l’égalité, il faudra augmenter la productivité physique marginale \(f'(x) \), donc diminuer le volume de production. Ainsi par exemple si le prix du blé baisse relativement à celui des intrants, l’optimum économique correspondra à un rendement plus bas par rapport à la période antérieure.

On notera que dans la zone efficace (2b), la productivité moyenne du facteur considéré est décroissante. Donc quand on ne prend en compte qu’un seul facteur, il n’est pas nécessairement dramatique que sa productivité moyenne baisse. Ainsi par exemple la baisse du « rendement énergétique », c’est-à-dire du rapport entre les outputs (équivalent en énergie alimentaire de la production) et les inputs (équivalent en énergie fossile des intrants) doit être relativisée, même si l’énergie fossile est un facteur relativement rare et non reproductible : il faut aussi considérer l’évolution de la productivité des autres facteurs. Par contre il est souhaitable que la productivité totale des facteurs augmente, c’est-à-dire le rapport entre la production en volume et la quantité de tous les facteurs utilisés. Mais cette dernière n’est pas toujours aisée à mesurer.

La prise en compte de l’emploi de plusieurs facteurs dans la production rend l’analyse plus complexe. Dans la réalité on utilise plusieurs facteurs qui peuvent être partiellement substitutables ou complémentaires. L’optimum économique sera atteint quand les ressources rares auront la meilleure affectation possible. Du point de vue micro-économique dans la théorie néoclassique on l’établit par le coût d’opportunité, valorisation marginale d’une ressource limitante. Ainsi par exemple le coût d’opportunité d’un hectare de terre (ou d’un franc de capital) représente ce que l’on perdrait si on renonçait à l’emploi d’une unité supplémentaire de facteur. Mais une ressource n’acquiert de coût d’opportunité ou coût marginal que quand elle est limitante : c’est alors la meilleure valorisation économique possible de ce facteur, la possibilité d’affectation la plus intéressante, du moins dans le cadre des aspects micro-économiques pris en compte.
Quand on utilise plusieurs facteurs, celui qui est en quantité insuffisante devient limitant : certaines combinaisons productives sont inaccessibles. En agronomie cela correspond à la loi du minimum énoncée par Liebig en 1843. Un facteur limitant impose une limite qui empêche d’une façon absolue l’effet des autres facteurs au-delà de cette limite ; au contraire il permet le libre effet de ces facteurs en deçà. Dans la réalité les facteurs pouvant être limitants sont nombreux (beaucoup de facteurs agropédoclimatiques le sont) et il n’est pas toujours aisé de lever ces contraintes sur le terrain.

Appliquées à l’agriculture toutes ces considérations supposent que l’on puisse rendre compte de la réponse en termes de rendement à l’apport croissant d’intrants afin d’établir la dose optimale à employer. Pour cela on peut soit effectuer des expérimentations, mais la très grande variabilité des résultats empêche souvent de tirer des lois générales, soit prévoir la réponse en termes de rendement par une modélisation de celui-ci en fonction de facteurs agropédoclimatiques : divers modèles ont été ainsi élaborés (cf. Gate 1995).

Le progrès technique.

Le fait que la productivité marginale d’un facteur diminue à partir d’un certain niveau d’emploi (the law of diminishing returns) est le cas à court terme seulement, pour un état donné de la technique et avec un seul facteur variable. A long terme quand le capital et la technologie varient, la productivité marginale peut être croissante. Ainsi, en agrandissant la taille des unités de production on peut avoir des rendements d’échelle croissants (économies d’échelle). Cultiver une parcelle de 2 ha par exemple ne requiert pas 4 fois plus de temps que pour une parcelle d’un demi hectare car le temps de trajet, la durée du demi-tour en bout de rang dans les travaux culturaux, les effets de bordure ne sont pas proportionnels à la surface ; il en est de même pour certaines charges comme celles en matériel. Mais cela n’est pas toujours le cas, par exemple si la mauvaise organisation dans de grandes unités entraîne des rendements d’échelle décroissants. Par ailleurs en substituant un facteur de production à un autre, on peut obtenir des gains de productivités (rendements de substitution) en combinant différemment les facteurs entre eux. Ainsi durant les dernières décennies en agriculture on a substitué du capital (matériel, bâtiments) au travail ; la production agricole « labor saving » a permis un fort accroissement de la productivité du travail, objectif qui paraissait prioritaire.

Le progrès technique est défini comme une nouvelle manière de produire permettant d’obtenir plus de produit avec la même quantité de facteurs, ou bien un même volume avec moins de facteurs dépensés ; il peut aussi permettre de produire des biens nouveaux ou de meilleure qualité. Il résulte de la mise en œuvre de nouveaux procédés, ou d’une nouvelle organisation de la production, ou de l’emploi de nouveaux matériaux ou de l’amélioration de la formation et du savoir faire des travailleurs. Mais en définitive il correspond quasiment toujours à un **accroissement des connaissances** permettant une meilleure efficacité de la production : ces connaissances peuvent être selon les cas inclues dans les intrants et le capital utilisé ou bien mises en œuvre dans les processus de production. Ainsi l’économie évite la « stagnation » qu’entraîneraient les rendements décroissants de chaque facteur utilisé et que craignaient certains économistes classiques. Ce rôle croissant du savoir, des connaissances et de l’information dans les processus de production est un élément essentiel des économies modernes. La théorie néoclassique considérait le progrès technique comme exogène à l’économie, d’où un certain paradoxe puisqu’il s’agit d’un élément essentiel à celle-ci. Le progrès technique résulte en effet en grande partie de choix (investissements en recherche-développement, en formation, efforts d’expérimentation, recherche de compétitivité ou de diminution de son labeur, etc.).

Les théories de la croissance et du progrès technique ont été renouvelées récemment par la notion de croissance endogène. Elle est construite autour de l’idée que les rendements (productivités marginales) ne sont pas décroissants quand on prend en compte tous les facteurs pouvant être
accumulés : capital physique, capital humain (compétences), capital immatériel (connaissances technologiques) et capital public d'infrastructures. La croissance est alors vue comme un processus auto-entretenu (endogène) à cause des gains dus à des externalités positives. Par exemple les entreprises en investissant améliorent non seulement leur efficacité propre, mais aussi celle d'autres entreprises utilisant leurs produits. L'investissement dans le capital humain, c'est-à-dire l'accroissement des connaissances, peut également présenter un rendement croissant : un niveau de connaissances est d'autant plus efficace qu'il est possible d'échanger et d'interagir avec d'autres personnes de ce niveau, il y a enrichissement mutuel et transfert aux autres d'où externalité de réseau en quelque sorte. En outre cela se transmet au moins partiellement à son entourage, d'où un certain caractère multiplicatif qui accroît la rentabilité de l'investissement initial en connaissances. Au niveau individuel également, l'apprentissage par la pratique (learning by doing) et le fait qu'une personne formée peut assimiler plus facilement de nouveaux savoirs entraîne la possibilité de rendement croissant en matière de formation (même si cela n'est pas systématique, la qualité de l'information jouant par exemple un rôle important).

La recherche et le développement (RD) sont tout particulièrement des activités à rendement croissant : comme il s'agit souvent de biens publics (non rivaux), l'utilisation de leurs résultats par une personne ou une entreprise est compatible avec celle d'autres personnes ou d'autres entreprises. Autrement dit, on les finance une fois mais ils peuvent être utilisés un nombre infini de fois par différentes personnes, si bien moins il n'y a pas appropriation des résultats de la RD. Cette propriété de la connaissance scientifique fait qu'il y a là aussi possibilité de rendements croissants. Alors que l'utilisation en quantité croissante d'un facteur physique voit l'augmentation de production due à des unités supplémentaires décroître à partir d'un certain niveau d'emploi, celle d'un facteur comme la connaissance peut induire une meilleure efficacité de la production sans détérioration même en cas d'usage important (sauf si des phénomènes d'encombrement apparaissent).

Enfin la dépense publique en infrastructures diverses (réseaux de communication ou de télécommunications, services d'information, etc.) contribue à améliorer la productivité de chaque entreprise si ce sont des biens non rivaux. Là aussi financés une fois ils améliorent la productivité d'un grand nombre tant qu'il n'y a pas encombrement, donc ils peuvent présenter un ratio résultats/coûts plus favorable et des rendements croissants : un bien supplémentaire peut avoir des effets plus que proportionnels.

Bien que la théorie de la croissance endogène (présentée ici de façon très sommaire) soit surtout macro-économique, elle ne doit pas être ignorée dans l'étude des perspectives des rendements. Ainsi la recherche scientifique permet une amélioration des connaissances notamment en matière de fertilisation, de conduite culturelle, de traitements, etc. Cela rend possible un ajustement fin des apports aux besoins des cultures et donc une amélioration de l'efficacité (i.e. du rapport entre le produit obtenu et les intrants dépensés) par diminution des gaspillages car en l'absence de connaissance on risque fort d'apporter trop ou pas assez d'engrais, de pesticides, d'eau, etc. Une fois cette connaissance obtenue par la recherche, elle peut être utilisée par des millions d'agriculteurs (à condition qu'elle soit diffusée et adoptée), sans qu'il y ait concurrence entre eux à son emploi. Le système de formation, d'information et de diffusion des connaissances une fois mis en place peut également profiter à un très grand nombre. Toutefois comme le montrent ces deux exemples, les externalités – qui peuvent être importantes – ne sont pas acquises d'avance ni systématiques : il faut que l'information se diffuse et soit adoptée, il faut également que le produit de la recherche soit utile pour la société (du moins pour certains groupes) et soit utilisable par eux ; or tous les groupes sociaux n'ayant pas les mêmes intérêts, des conflits importants peuvent apparaître et risqueront de ruiner les éventuels bénéfices de la connaissance ou de bloquer son emploi ou son expansion.

Notes et études économiques n° 8, septembre 1998
Quand l’innovation s’est diffusée, quels sont ses effets a posteriori ? L’accroissement des connaissances et de "l’information" conduit en principe à une meilleure efficacité, c’est-à-dire produire à moindre coût le même bien ou fournir un produit de meilleure qualité. Ceci entraîne généralement une diminution des prix des produits et/ou une croissance des quantités ou des qualités livrées à prix égal. Les gains de productivité se répartissent ensuite entre producteurs et consommateurs de façon plus ou moins égale : si les prix ne baissent pas, les producteurs, ou les firmes d’amont, ou celles d’aval, ou bien le secteur de la distribution seront les bénéficiaires ; au contraire si les prix diminuent en proportion égale à celle des économies de coût unitaire, les avantages iront aux consommateurs. Mais ces bénéfices s’accompagnent aussi d’effets négatifs, voire de dégâts ; aussi un questionnement est-il apparu sur certaines avancées scientifiques et techniques et sur l’orientation des recherches.

En particulier les différentes approches présentées ignoring les coûts écologiques et sociaux non comptabilisés, les externalités négatives (pollution, dégradations, encombrement), les prélèvements gratuits sur la nature même pour des biens non reproductibles, les phénomènes d’irréversibilité. Or ceux-ci sont devenus de plus en plus importants et ne peuvent plus être négligés. La science économique doit impérativement prendre en considération l’insertion des activités économiques dans la sphère sociale et dans la biosphère (Passet 1979). En effet c’est bien de là que pourraient venir des phénomènes de dégradation irréversible conduisant à une limite en particulier si le milieu naturel se dégrade à un degré tel qu’on ne puisse plus produire comme c’est le cas pour les sols fortement salinisés, ou très érodés, ou bien devenus toxiques à cause de l’accumulation de certains métaux ; ce pose aussi la question de l’épuisement à plus ou moins long terme de certaines ressources (phosphates, énergies fossiles) ou de la diminution de la biodiversité ou de certaines pollutions. Depuis deux décennies un nombre croissant d’économistes cherchent à intégrer ces aspects avec plus ou moins de succès (Faucheux, Noël, 1995) et un nouveau type de développement, le développement durable est actuellement à l’ordre du jour. Celui-ci ne doit pas être considéré uniquement sous l’angle des ressources naturelles, mais aussi en prenant en compte les phénomènes sociaux, un important facteur d’insoutenabilité du modèle de développement actuel étant en effet l’exclusion d’une partie de l’humanité et sa paupérisation.

On peut se demander si l’accroissement des connaissances permettra de dépasser cette limite due à la non prise en compte des coûts écologiques et sociaux qui peuvent avoir en retour à long terme des impacts très négatifs. Actuellement cela se heurte aux limites du calcul économique qui, malgré les réflexions des dernières années et décennies en ce domaine, prend encore fortement en compte un certain nombre de ressources et de facteurs pourtant en quantité limitée et non reproductibles, mais dont le prix de marché reflète très mal cette rareté ; cela soulève aussi la question des mesures incitatives à prendre. Dans ce cas les rendements décroissants viendraient de la non reproductibilité — à plus ou moins longue échéance — d’un mode de production qui épuise certaines ressources ou dégrade le milieu. Certes beaucoup pensent que le progrès technique permettra de trouver des substituts (l’énergie de fusion remplacerait par exemple les énergies fossiles) et que les mesures réglementaires et les avancées scientifiques et techniques permettront d’éviter ou d’atténuer certaines catastrophes redoutées (changement climatique, etc.). Mais on peut se demander si cette prise de conscience des hommes conduisant à des actions et à des mesures en ce domaine se fera assez tôt, d’autant plus que cela implique une coopération entre tous à l’échelle mondiale difficile à mettre en œuvre (Rotillon, Tazdait, 1995)...

Ce bref réexamen de quelques notions économiques concernant le progrès technique montre le rôle du comportement micro-économique des producteurs, des divers facteurs de production à considérer, de différents aspects du progrès technique, des externalités, des actions des pouvoirs publics, de la R&D. L’une des questions-clés à se poser est celle du rendement que l’on cherche à avoir (en s’en donnant les moyens), autrement dit de l’objectif en ce domaine tout en respectant les principes du développement durable.
Chapitre II - LE RENDEMENT MAXIMUM POTENTIEL DES CULTURES.

On s’interroge ici sur le rendement maximum théorique, c’est-à-dire sur le niveau de l’asymptote en quelque sorte : quel est le rendement maximum possible quand tous les facteurs agroclimatiques sont à l’optimum (en particulier l’hygrométrie, la température, l’apport azoté) et en l’absence de maladies et ravageurs(1) ? D’où provient ce maximum théorique ? Quels sont ses facteurs de variation ? Est-il possible de l’accroître, c’est-à-dire de déplacer l’asymptote ? Domons d’abord en premier lieu l’ordre de grandeur : pour une culture comme le blé en France, le rendement maximum en matière sèche totale grain+paille est d’environ 25 tonnes (250 q) par hectare, et en grains de 140 quintaux.

Les facteurs expliquant l’existence d’un maximum.

La production de biomasse est issue de la transformation de l’énergie solaire en énergie chimique (sous forme de liaison dans les molécules) selon la relation :

\[
\text{CO}_2 + \text{H}_2\text{O} + \text{éléments minéraux} \xrightarrow{\text{lumière}} \text{biomasse} + \text{O}_2.
\]

Le sol reçoit en une année une énergie solaire d’environ 1 000 tep/ha par an sous nos latitudes et notre climat. Mais le rendement de la conversion de l’énergie solaire incidente en énergie chimique continue dans les plantes est très faible, de l’ordre de 1 %. En effet la photosynthèse n’utilise que le rayonnement visible, il faut tenir compte de l’efficience de l’interception par le couvert végétal, et du rendement de la conversion biologique de l’énergie solaire en biomasse. En outre la respiration des végétaux consomme une partie de l’énergie fixée, et la végétation n’est pas en place à son maximum toute l’année (tab.1.)

1. énergie solaire incidente ... 100
2. la photosynthèse n’utilise que le visible .. 45
3. énergie absorbée par la feuille (le reste étant réfléchi par le feuillage ou transmis au sol) .. 36
4. énergie potentielle des molécules synthétisées compte tenu d’un rendement d’environ 25 % des réactions photochimiques et biochimiques de fixation du CO₂ ... 9
5. énergie potentielle effectivement recueillie sur 24 heures, compte tenu de la respiration qui consomme des hydrates de carbone .. 5
6. énergie effective fixée sur l’année compte tenu de la durée de végétation et des phases de végétation peu actives (hiver, fructification, etc.) .. 0,5 à 2,5

De la sorte les 1 000 tep (2) d’énergie solaire reçue par ha en France n’aboutissent en moyenne qu’à 10-12 tonnes de matière sèche par hectare, soit l’équivalent de 4-5 tep/hectare (1 tonne de matière sèche = 0,4 tep) ; d’où un rendement final de la photosynthèse d’environ 0,5 % avec de fortes variations selon les cultures. Malgré la faiblesse relative de ce rendement la biomasse produite chaque année sur terre est considérable, comparée aux besoins humains alimentaires et énergétiques (tableau 2.) (Bonny 1997c). Ainsi la consommation totale d’énergie pour les usages mécaniques et calorifiques représente 12 % de l’énergie contenue dans la biomasse, et les besoins alimentaires en 1990 1 à 3 % de celle-ci. Mais toute la biomasse produite annuellement n’est pas aisément accessible et consommable par l’homme.

1 Nous considérons ici le rendement maximum potentiel quand tous les facteurs et conditions de croissance et de développement sont à l’optimum et que seule l’énergie lumineuse est éventuellement limitante. Mais certains auteurs utilisent ce terme dans un sens plus restreint, quand la croissance de la plante n’a pas d’autres limitations que les propriétés du climat et du sol, ce qui entraîne naturellement une évaluation plus faible du potentiel.

2 1 tep = 1 tonne équivalent pétrole = 42.10^9 joules = 42 GJ

Notes et études économiques n° 8, septembre 1998
Tableau 2. - Comparaison des besoins humains avec la production d'énergie végétale nette chaque année et celle récupérable pour l'alimentation à l'échelle de l'ensemble de la planète (évaluations approximatives : il s'agit d'ordres de grandeur).

<table>
<thead>
<tr>
<th>Quantité</th>
<th>en % de l'énergie contenue dans la production</th>
<th>végétale totale nette</th>
<th>cultivée récupérable</th>
</tr>
</thead>
<tbody>
<tr>
<td>- production végétale nette chaque année (*)</td>
<td>182 Gt</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- quantité d'énergie contenue dans cette production (sur la base de 0,43 tep/t)</td>
<td>73 Gtep</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>- quantité d'énergie (fossile et renouvelable) consommée en 1990 pour les besoins humains (transports, chaleur, moteurs, etc.)</td>
<td>8,8 Gtep</td>
<td>12,1</td>
<td>-</td>
</tr>
<tr>
<td>- production des terres cultivées vers 1990 soit une quantité d'énergie de</td>
<td>11 Gt</td>
<td>6,0</td>
<td>-</td>
</tr>
<tr>
<td>- production récupérable des terres cultivées et des pâturages permanents (**)</td>
<td>2,5 Gtep</td>
<td>3,4</td>
<td>100</td>
</tr>
</tbody>
</table>

- besoins alimentaires :

1) en 1995, pour 5,7 milliards d'hommes
 - base physiologique (3 000 kcal/jour) 0,62 Gtep 0,8 25
 - équivalent en énergie végétale primaire d'une alimentation de type occidental avec 33 % de calories d'origine animale, soit un équivalent en énergie végétale initiale de 10 400 kcal 2,01 Gtep 2,8 80
 - équilibrée mais moins carnée (3600 kcal/jour avec 10 % de calories d'origine animale, soit une énergie végétale primaire de 4 800 kcal) 0,93 Gtep 1,3 37

2) en 2020 pour 8 milliards d'hommes
 - base physiologique 0,88 Gtep 1,2 35
 - alimentation occidentale 3,04 Gtep 4,2 122
 - alimentation équilibrée moins carnée 1,40 Gtep 1,9 56

3) pour 10 milliards d'hommes
 - base physiologique 1,10 Gtep 1,5 44
 - alimentation occidentale 3,80 Gtep 5,2 152
 - alimentation équilibrée moins carnée 1,75 Gtep 2,4 70

G = giga = 10^9 tep = tonne équivalent pétrole.

(*) production spontanée ou cultivée, végétaux terrestres et marins (la production des continents représente environ les deux tiers du total). Il s'agit d'une production nette : l'énergie nécessaire à la respiration des plantes est déduite (source : Barbault 1995, p. 218).

(**) On ne peut récupérer que la moitié au plus de la production des terres cultivées compte tenu des parties non consommables par l'homme ; à cela on doit déduire les semences et certaines pertes difficilement évitables. On y a ajouté une estimation très approximative de la production des pâturages permanents récupérable par le bétail et transformable en produits animaux. Il ne faut pas oublier par ailleurs que dans les pays en développement on utilise des animaux de trait.

N.B. Une alimentation de type occidental comprend une forte proportion de calories d'origine animale. Compté tenu du coefficient de transformation par les animaux, cela représente une quantité importante de calories végétales primaires transformées en calories animales. (Cf. Malassis, Padilla 1986). Cela explique que nous avons indiqué l'équivalent en énergie végétale primaire de l'alimentation selon qu'elle comprenne une forte ou faible part de viande.
Il convient donc de garder à l'esprit le potentiel considérable de captation de l'énergie solaire que représentent les végétaux (malgré le bas rendement de la photosynthèse) et le fait que la biomasse qu'ils produisent sur terre est considérable comparée aux besoins alimentaires humains, même si seule une part de celle-ci peut être transformée en aliments. En ce qui concerne la transformation de la biomasse en carburants ou en combustibles remplaçant l'énergie fossile, cela est plus difficile en raison du bas prix actuel de cette dernière et du caractère dilué dans l'espace et le temps de la biomasse produite, de sa teneur en eau, etc.

Les variations du maximum potentiel selon les cultures et la latitude.

L'efficience de la photosynthèse varie selon le type de plante : il existe dans la nature deux grands systèmes de photosynthèse C₃ et C₄. Les plantes en C₃ correspondent aux plantes habituelles des régions tempérées ; les plantes en C₄ (plantes d'origine tropicale comme le maïs, la canne à sucre) ont un meilleur rendement photosynthétique en raison des phénomènes physiologiques pendant la première partie du cycle de la photosynthèse avec notamment une concentration en CO₂ qui a un effet "turbo". Le rendement potentiel maximum varie également selon la latitude, plus exactement en fonction du rayonnement (qui détermine la quantité de matière sèche MS accumulée) et de la température (qui détermine la durée de végétation) : aux latitudes élevées, la durée de végétation et le rayonnement diminuent ; de ce fait la quantité de MS accumulable est plus faible. Gosse et al. (1986) ont exprimé l'accumulation de matière sèche aérienne (MSa) en fonction du rayonnement utile à la photosynthèse intercepté par la culture PARa (photosynthetically active radiation) : la relation est linéaire en condition d'alimentation hydrique et minérale optimale (en supposant que tout le rayonnement solaire utile à la photosynthèse incidente peut être absorbé par la végétation) (Fig. 3). Ainsi le potentiel théorique de production à Versailles pour les plantes en C₄ se situe entre 45 et 55 t/ha/an, et pour les plantes en C₃ entre 32 et 38 t de matière sèche par ha et par an. Cela correspond pour une plante en C₃ à une efficacité de 1,3 à 1,5 % par rapport à l'énergie solaire incidente et pour une plante en C₄ à un rendement d'environ 2 %. A Nice le potentiel théorique pour une plante en C₃ est d'environ 50-53 t MS/ha et par an (en conditions optimales d'alimentation hydrique et minérale, rappelons-le). Ainsi des plantes en C₃ cultivées dans le sud de la France ont un potentiel théorique de production du même ordre que des plantes en C₄ cultivées dans le nord (Gosse et al., 1986).

Fig. 3. - Évolution de la productivité potentielle d'un couvert végétal (en t de MS par ha) en fonction du gisement solaire (somme du rayonnement intercepté) et du type de photosynthèse (Gosse et al. 1986).

Notes et études économiques n° 8, septembre 1998
Mais dans la réalité l'énergie utile absorbée para est moindre car la végétation n'est pas en place toute l'année et reste longtemps insuffisamment développée pour permettre une interception maximale du rayonnement, ce qui diminue par près de 2 le rendement maximum possible (Tabl. 3). Dans le cas d'une culture comme le colza qui peut être implantée à l'automne ou au printemps, la quantité de MS accumulée sera plus faible pour un colza de printemps dont la durée de végétation est moindre, ce qui explique une grande part des différences de rendements entre ces deux cultures en un lieu donné.

Tabl. 3 - Productivité potentielle maximale d'un couvert végétal à la latitude de Versailles

<table>
<thead>
<tr>
<th></th>
<th>si tout le rayonnement utile incident était absorbé par la végétation</th>
<th>compte tenu de la durée du cycle de végétation et de sa place dans l'année (où le rayonnement incident varie)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plante en C3 (e.g. blé)</td>
<td>32 - 38</td>
<td>22 + 2 (*)</td>
</tr>
<tr>
<td>Plantes en C4 (e.g. maïs)</td>
<td>45 - 55</td>
<td>23</td>
</tr>
</tbody>
</table>

(*) Dans le cas du blé il faut ajouter la matière sèche accumulée pendant la phase d'implantation (environ 2 t/ha).

On peut ainsi retenir que si la productivité potentielle maximale d'une culture est en théorie de 32 à 55 t de MS/ha selon les plantes à la latitude du Bassin parisien, ce chiffre tombe en réalité à 25 t MS/ha environ comme le cycle de végétation des cultures ne dure pas toute l'année et que pendant une longue période la végétation n'est pas assez développée pour permettre une interception maximale du rayonnement solaire. Cette productivité potentielle de 25 t correspond à un rendement de 1 % de l'énergie solaire incidente. La capacité de la végétation à intercepérer le rayonnement solaire joue ainsi un grand rôle pour expliquer la quantité de matière sèche produite. Avec la canne à sucre en place toute l'année on a par exemple le meilleur potentiel en biomasse totale : 60 - 70 t MS/ha. Aussi dans les pays tempérés pour accroître la production de matière sèche, on cherche à planter les cultures plus tôt, à avoir une densité suffisante et à allonger le cycle de végétation pour pouvoir capter davantage d'énergie solaire. Le potentiel maximum en biomasse varie selon les cultures. Les plantes en C₄ ont comme on l’a dit un potentiel productif élevé mais dans les pays tempérés il est limité par la durée de végétation. Le sorgho (plante en C₄) parvient à 25-27 t MS dans le sud du Bassin Parisien, le maïs à un peu moins. De la sorte en climat tempéré la productivité d’une espèce en C₃ comme le blé peut être supérieure à celle d’espèces en C₄ implantées tardivement au printemps comme le maïs.

En définitive on retiendra que la production de matière sèche dépend plus de la capacité de la végétation à intercepter le rayonnement solaire que de l’efficacité de la conversion de l’énergie solaire. La productivité potentielle en un lieu donné dépend du rayonnement incident (donc de la latitude), de la durée de végétation et de la place du cycle de végétation dans l’année (Gosse et al. 1986). Ceci donne des indications sur les voies à suivre si l’on veut accroître les rendements.

Le rendement en grain.

L'estimation faite concerne le potentiel en matière sèche totale, c'est-à-dire inclut pour une céréale à la fois le grain et la paille (1). Or l'indice de récolte (i.e. le ratio partie récoltée/biomasse totale) joue ensuite un rôle fondamental car son accroissement augmente le rendement en grain, même à productivité totale en matière sèche inchangée. L'amélioration des rendements du blé en Europe depuis 1960 à aujourd'hui s'explique ainsi en grande partie par l'accroissement de l'indice de récolte : en 1955-60 il était de 30-35 % ; aujourd'hui il varie de 45% à 55 %. Il y a eu ainsi modification de la répartition

1 La quantité de biomasse racinaire est mal connue, elle serait environ moitié moindre que celle de la paille, mais il faudrait rajouter à cela les exsudats racinaires.
de la matière sèche totale produite entre la paille et le grain. Dans les expériences où on lève les contraintes (en particulier la verse), les variétés anciennes révèlent un potentiel de productivité de matière sèche de 24 t/ha alors que les variétés modernes ne parviennent qu’à 25 t ! Durant les dernières décennies le potentiel a donc peu augmenté, mais en raccourcissant les pailles, on a accru le rendement du grain. En comparant les variétés de blé utilisées en Suède entre 1910 et 1976 Ledent et Stoy (1988) ont montré que la hauteur de tige était passée de 140 cm au début du siècle à 90 cm en 1976.

L’indice de récolte varie également selon la culture. Ainsi les oléagineux ou les protéagineux ont un rendement final plus faible car le coût énergétique de la production d’huile et de protéines dans la graine le limite. Le colza a ainsi un potentiel en biomasse à peu près le même que le blé (25 t MS), mais l’indice de récolte est plus faible compte tenu de l’énergie nécessaire à la plante pour fabriquer de l’huile (les étapes de biosynthèse des matières grasses induisent un certain nombre de pertes). Il en est de même pour une plante riche en protéines.

Le potentiel productif maximum de 25 t MS/ha pour le blé en région parisienne donne avec l’indice de récolte de 50 % souvent considéré comme le plus élevé possible aujourd’hui un rendement en grain de 125 q de MS. Le blé aux normes comportant 14 % d’humidité, le rendement en grain maximal sera d’environ 145 q/ha. Pour le colza il serait de l’ordre de 55 à 60 q/ha. Rappelons qu’il s’agit là d’un potentiel maximum, c’est-à-dire atteignable si toutes les conditions sont parfaites, sans aucun facteur limitant (eau, température, nutrition minérale, maladies, etc.) tout au long du cycle de culture. Les valeurs avancées pour cette productivité potentielle maximale varient quelque peu selon les experts consultés : d’une part cette notion est souvent confondue par erreur avec le rendement maximal que l’on observe dans la réalité dans les meilleures conditions climatiques, d’autre part plutôt qu’une seule valeur l’indication d’une fourchette peut paraître parfois préférable. En effet certains experts se situent plutôt dans des hypothèses prudentes et ainsi évaluent le rendement maximal potentiel à 140 q/ha tandis que d’autres choisissent des hypothèses plus optimistes en termes de potentiel maximal atteignable (25-26 t MS/ha) et d’indice de récolte (55 %), aboutissant ainsi à des potentiels plus élevés.

Ce rendement maximum en grain du blé varie selon la latitude et est plus élevé dans le Nord. Des rendements records de blé de 170-180 q auraient été atteints en Écosse sur de petites parcelles. Cela est lié à la durée de la période du remplissage des grains qui est à peu près fixe en somme de degrés-jours (de l’ordre de 625° j). Si la température moyenne est assez fraîche, cette durée sera longue en nombre de jours, une quantité importante de rayonnement sera interceptée et le rendement pourra être élevé. Si au contraire la température moyenne est forte, la durée de la période de remplissage des grains sera courte, et le rendement plus faible. Ainsi le blé valorise bien les rayonnements peu intenses et une longue durée du jour, et a donc des rendements en grain plus élevés dans le nord. Son rendement maximum possible est au contraire plus faible dans le sud où il est généré par la chaleur et où la durée de remplissage des grains est plus brève. A l’inverse pour le maïs le rendement maximum est de 170-180 q dans le sud-ouest, mais d’environ 100 q dans le nord de la France. En effet le maïs est une plante tropicale très exigente en température pour pousser et qui valorise mieux le rayonnement à température élevée. Entre son semis vers le 1er mai et sa date de récolte à la première gelée, la somme des degrés-jours dans la phase de formation du grain est plus importante dans le sud que dans le nord, ce qui y permet un rendement plus élevé si l’apport d’eau est suffisant.

Notes et études économiques n° 8, septembre 1998
Les perspectives de croissance du rendement maximum.

Pourra-t-on avoir à moyen ou long terme un potentiel pour le blé supérieur à 25 t MS/ha et peut-on encore accroître l'indice de récolte, ce qui permettrait de dépasser alors le rendement en grain de 145 q/ha ? A moyen terme les progrès en matière de potentiel paraissent limités : à la latitude parisienne on ne peut guère aller au delà de 26 t MS/ha. Dans les deux ou trois décennies qui viennent, le potentiel restera sans doute assez proche de l’actuel. Par contre dans 50 ans on devrait dépasser le potentiel de 25 t MS/ha grâce aux analyses de l’élaboration de la biomasse et à la connaissance des enzymes clés intervenant dans la transformation de l’énergie lumineuse, dans le transport dans la plante, et dans la remobilisation dans la partie intéressante pour l’homme. En revanche il paraît plus difficile d’augmenter substantiellement l’indice de récolte lui-même.

La biologie moléculaire pourrait permettre d’étudier un certain nombre de fonctions et en particulier de mieux comprendre sur le plan enzymatique comment fonctionne réellement la plante et quels sont les facteurs limitants, ce qui donne des clés pour savoir où intervenir. Toutefois accroître le potentiel productif est difficile même en utilisant le transfert de gène. La physiologie de la plante fait que ce sont les interactions qui sont importantes. On peut repérer une enzyme clé et la modifier mais cela n’entraînera pas nécessairement un meilleur fonctionnement du végétal car les interactions avec les autres fonctions peuvent devenir moins favorables par exemple. Les facteurs limitants proviennent en effet en général d’interactions, non d’une seule enzyme.

Par ailleurs à long terme pour améliorer le rendement en grain comme celui-ci s’élabor en grande partie à partir de la photosynthèse post-floraison, on envisage d’avancer la floraison et d’accroître la part du cycle qui se déroule après la floraison. Avec une floraison plus précoce et une post-floraison longue, on devrait pouvoir augmenter le potentiel productif, mais cela sera sans doute long. Les blés hybrides qui permettent d’avancer la floraison pour une durée de cycle donnée pourraient à cet égard s’avérer intéressants.

L’accroissement du gaz carbonique dans l’atmosphère est-il susceptible d’accroître les rendements ? Logiquement si le taux de CO₂ augmente, les potentiels productifs devraient progresser proportionnellement. Mais il faut prendre en compte l’évolution climatique liée : les céréales seraient aussi affectées par un accroissement de température et par les modifications du régime des pluies, aussi est-il difficile de prévoir l’évolution des potentiels productifs sous l’effet du changement climatique, d’autant plus que l’instabilité des rendements risque de croître avec l’instabilité du climat. Rosenzweig et Parry (1994) ont cherché à évaluer l’impact potentiel du changement climatique sur la production agricole mondiale, en particulier du doublement de la teneur en gaz carbonique prévu pour 2060. Celui-ci entraîne une hausse de la température moyenne de la planète de 4,0°C à 5,2°C et un accroissement de la pluviométrie. En fonction de différents scénarios de changement climatique effectués par trois organismes (1) et de divers modèles de croissance des cultures provenant de nombreux pays, les deux auteurs ont évalué l’impact sur les rendements dans le monde sous trois hypothèses successives : (a) sans adaptation des pratiques culturales, (b) avec une adaptation assez légère (modifications des dates de semis, apports d’eau supplémentaires en zones déjà irriguées, utilisation de variétés mieux adaptées déjà existantes), (c) avec une adaptation très importante (modifications de dates de semis de plus d’un mois, accroissement de la fertilisation, de l’irrigation et mise au point de nouvelles variétés). Sans adaptation, les variations de rendements sont positives aux latitudes hautes et moyennes, mais négatives aux basses latitudes (amplitude de +30 % à -30%); toutefois dans le scénario climatique de l’UKMO, le rendement baisse quasiment partout et est même divisé par 2 au Pakistan ; en effet aux latitudes basses la chaleur et le manque d’eau annule l’effet bénéfique du doublement de la teneur en gaz carbonique. Avec l’hypothèse d’adaptation légère, les rendements restent diminués dans les pays en développement.

1 Les trois scénarios de changement climatique sont ceux du GISS (Goddard Institute for Space Study, USA), du GFDL (Geophysical Fluid Dynamics Laboratory) et de l’UKMO (United Kingdom Meteorological Office).

Notes et études économiques n° 8, septembre 1998
Avec une adaptation importante, les rendements sont beaucoup moins affectés dans deux scénarios climatiques, mais dans celui de l'UKMO ils demeurent réduits. La validité de ces résultats dépend bien sûr de la qualité du modèle et en particulier des variables prises en compte ou au contraire omises. R. Delécolle, bioclimatologue à l'INRA, souligne par ailleurs que le changement climatique pourrait accroître la variabilité du climat et des rendements, phénomène important à considérer dans une optique de sécurité alimentaire.

En définitive la figure 4 rappelle les principaux facteurs intervenant directement sur la productivité maximale et observée des cultures. Il paraît probable que durant les deux ou trois prochaines décennies le rendement maximum potentiel du blé devrait rester à 140-145 q/ha en grain et à 25 t MS/ha. A plus long terme ces potentiels pourraient être augmentés. Mais le niveau de rendement maximum potentiel des cultures n’est pas à court terme un facteur de limite des rendements. En effet en France en 1995 on est à moins de la moitié de ce potentiel, et en moyenne dans le monde on est aussi très éloigné de la productivité maximale. Nous allons donc chercher à expliquer les écarts entre rendements observés et rendements maximums possibles vu leur importance. On notera que le rendement global de la photosynthèse (le ratio entre l’énergie fixée par les plantes et l’énergie solaire incidente) est très bas, inférieur à 1%. Il pourrait y avoir compte tenu de l’énergie disponible 100 à 200 fois plus de végétaux à la surface de la terre, situation qui a dû être approchée au Carbonifère et au Permien (Frontier, Pichod-Viale 1993). L’écologue R. Margalef en conclut que "le principe conducteur de l’évolution des écosystèmes n’est nullement l’utilisation d’une quantité d’énergie maximale, mais seulement celle de l’énergie nécessaire au maintien de la quantité maximale d’organisation autorisée par les autres facteurs limitants". Malgré ce faible rendement la production végétale est considérable, bien supérieure aux besoins humains. Rappelons aussi qu’en transformant l’énergie solaire incidente en énergie chimique emmagasinée dans les composés organiques des végétaux, en dégageant aussi de l’oxygène, la photosynthèse joue un rôle essentiel pour la vie sur la terre. Dans la mesure où son rendement final est très bas, si on l’améliorait quelque peu, on accroîtrait considérablement la production. On est donc très loin des limites biophysiques de la production végétale.

Fig. 4 - Présentation schématique des facteurs déterminant la productivité maximale d’une culture et le rendement observé (les chiffres entre parenthèses sont des ordres de grandeurs par ha pour le blé dans le Bassin Parisien).
Chapitre III - LES ÉCARTS ENTRE RENDEMENTS OBSERVÉS ET RENDEMENTS MAXIMUM POSSIBLES.

Le rendement maximum potentiel du blé étant de 145 q/ha actuellement à la latitude du Bassin parisien, quels sont les rendements réels observés dans les différentes régions, leur évolution et les facteurs expliquant les écarts entre les rendements effectifs et le maximum actuellement possible ?

Les rendements observés : de fortes variations dans le monde.

Ces fortes variations ne proviennent pas de la céréale considérée, le blé, qui serait peu adapté pour représenter certaines régions, mais se retrouvent pour l'ensemble des céréales (blé, orge, maïs, avoine, riz, seigle, sorgo, millet). En moyenne pour celles-ci le rendement 1994-96 est de 28 q/ha pour l'ensemble du monde ; mais une trentaine de pays ont un rendement inférieur ou égal à 10 q/ha ; à l'opposé 10 pays ont un rendement cérééal supérieur ou égal à 60 q/ha.

Tableau 3A - Rendements en blé des 10 premiers producteurs mondiaux de blé.
(d’après FAOSTAT, base de données de la FAO, mise à jour de novembre 1996)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chine</td>
<td>102,8</td>
<td>35,5</td>
</tr>
<tr>
<td>Inde</td>
<td>62,4</td>
<td>24,6</td>
</tr>
<tr>
<td>USA</td>
<td>61,6</td>
<td>42,6</td>
</tr>
<tr>
<td>Russie</td>
<td>33,6</td>
<td>14,2</td>
</tr>
<tr>
<td>France</td>
<td>32,3</td>
<td>67,5</td>
</tr>
<tr>
<td>Canada</td>
<td>26,1</td>
<td>22,3</td>
</tr>
<tr>
<td>Turquie</td>
<td>18,2</td>
<td>18,9</td>
</tr>
<tr>
<td>Allemagne</td>
<td>17,5</td>
<td>69,2</td>
</tr>
<tr>
<td>Pakistan</td>
<td>16,5</td>
<td>20,2</td>
</tr>
<tr>
<td>Australie</td>
<td>15,0</td>
<td>15,8</td>
</tr>
<tr>
<td>Total Monde</td>
<td>549,7</td>
<td>24,8</td>
</tr>
</tbody>
</table>

Tableau 3B - Rendement en blé des 5 principaux exportateurs mondiaux de blé (q/ha)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>35,9</td>
<td>24,6</td>
</tr>
<tr>
<td>Canada</td>
<td>20,4</td>
<td>22,3</td>
</tr>
<tr>
<td>Union Européenne à 15</td>
<td>17,4</td>
<td>57,6</td>
</tr>
<tr>
<td>Australie</td>
<td>11,9</td>
<td>15,8</td>
</tr>
<tr>
<td>Argentine</td>
<td>6,1</td>
<td>21,1</td>
</tr>
</tbody>
</table>
Tableau 3C - Rendement moyen dans le monde des principales céréales cultivées (moyenne 1994-1996). (D’après FAOSTAT, nov. 1996)

<table>
<thead>
<tr>
<th>Céréale</th>
<th>Production (millions de t)</th>
<th>Rendement (q/ha)</th>
<th>rendement le plus bas (q/ha)</th>
<th>rendement le plus élevé (q/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riz</td>
<td>553</td>
<td>37,1</td>
<td>Zaire : 7,5</td>
<td>Porto-Rico : 83,3</td>
</tr>
<tr>
<td>Blé</td>
<td>550</td>
<td>24,8</td>
<td>Vénézuela : 3,1</td>
<td>Pays-Bas : 84,7</td>
</tr>
<tr>
<td>Maïs</td>
<td>550</td>
<td>39,7</td>
<td>Cap-Vert : 3,1</td>
<td>Emirats Arabes Unis : 189</td>
</tr>
<tr>
<td>Orge</td>
<td>154</td>
<td>21,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorgho</td>
<td>61</td>
<td>13,2</td>
<td>Angola : 7,1</td>
<td>Yougoslavie : 48,5</td>
</tr>
<tr>
<td>Avoine</td>
<td>31</td>
<td>16,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Millet</td>
<td>27</td>
<td>7,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seigle</td>
<td>23</td>
<td>21,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toutes céréales</td>
<td>1964</td>
<td>28,0</td>
<td>Botswana : 2,8</td>
<td>Pays-Bas : 78</td>
</tr>
</tbody>
</table>

b) toutefois l’évolution en 30 ans a été importante, les rendements en blé ayant été multipliés par un peu plus de deux, avec un doublement dans les pays développés, plus qu’un triplement dans les pays en développement (tabl.4). Il faut noter que sur la période 1961-63 à 1994-96 la progression des rendements a été plus rapide dans les pays en développement que dans les pays développés ; dans ces derniers par ailleurs la moyenne des rendements paraît stagnée entre 1990 et 1996. Les rendements moyens dans les pays du Tiers-Monde ont ainsi dépassé en 1995 et 1996 ceux des pays développés. Toutefois dans certains pays les statistiques officielles fournies par les autorités publiques doivent être considérées avec précaution. Le poids de la Chine – ou la croissance indiquée pour les rendements entre 1961 et 1996 est considérable (+ 5,1 % par an) – influe assez fortement sur la moyenne des données des pays en développement. Par ailleurs parmi les pays développés l’Europe de l’Ouest et du Nord avec sa progression des rendements forte et continue se distingue très nettement des autres régions productrices (USA, Canada, Australie, ex-URSS) où les rendements ont un niveau plus bas mais en même temps une progression assez faible (Fig. 6).

c) les prévisions pour 2010 pour les pays en développement (Chine exclue) font apparaître un niveau de rendement du blé encore bas : la FAO l’évalue à près de 27 q/ha en tenant compte de différents types de culture selon les conditions agro-climatiques (tableau 4). Cela correspond à une croissance moyenne annuelle de l’ordre de 1,5 %, soit bien moins que durant les trois décennies passées dans les pays en développement ou en Europe, mais davantage que la progression des rendements de blé aux États-Unis.

Fig. 6a - Évolution des rendements du blé des 5 plus gros producteurs mondiaux de 1961 à 1996 (q/ha) (d’après FAOSTAT).
Fig. 5 - Rendements en blé (q/ha) en 1994-96 dans les pays en produisant plus de 0,5 Mio t
(d'après FAOSTAT) (NB les barres noires correspondent aux plus gros producteurs)
Fig. 6b - Évolution des rendements du blé de quelques pays gros producteurs de 1961 à 1996

1) Rendements en 1994-1996 (moyenne sur 3 ans) par grandes régions du monde (q/ha) (FAOSTAT, 11/96)

<table>
<thead>
<tr>
<th>Région</th>
<th>Rendement (q/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afrique</td>
<td>19,4</td>
</tr>
<tr>
<td>Amérique du Nord</td>
<td>23,9</td>
</tr>
<tr>
<td>Amérique du Sud</td>
<td>20,4</td>
</tr>
<tr>
<td>Asie</td>
<td>25,9 (dons USA: 24,6)</td>
</tr>
<tr>
<td>Europe de l'Ouest</td>
<td>54,5 (dons France: 67,5 ; Hollande: 84,7)</td>
</tr>
<tr>
<td>Europe de l'Est</td>
<td>33,6</td>
</tr>
<tr>
<td>Océanie</td>
<td>15,7</td>
</tr>
<tr>
<td>Ensemble du monde</td>
<td>24,8</td>
</tr>
</tbody>
</table>

2) Évolution depuis 30 ans (d'après FAOSTAT, novembre 1996)

<table>
<thead>
<tr>
<th>Année</th>
<th>Rendement (q/ha)</th>
<th>Taux de croissance annuelle (TCAM) (%)</th>
<th>Facteur de multiplication en 33 ans</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961-63</td>
<td>13,0</td>
<td>2,0</td>
<td>1,9</td>
</tr>
<tr>
<td>1989-91</td>
<td>24,5</td>
<td>3,5</td>
<td>2,9</td>
</tr>
</tbody>
</table>

3) Prévision d'évolution pour les pays en développement (Chine exclue) (q/ha) (Alexandratos, 1995, p. 85)

<table>
<thead>
<tr>
<th>Année</th>
<th>Rendement (q/ha)</th>
<th>TCAM (%)</th>
<th>Facteur multiplicatif</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blé ensemble</td>
<td></td>
<td>1,6</td>
<td>1,4</td>
</tr>
<tr>
<td>1988-90</td>
<td>19</td>
<td>1,6</td>
<td>1,4</td>
</tr>
<tr>
<td>2010</td>
<td>26,6</td>
<td>1,6</td>
<td>1,4</td>
</tr>
<tr>
<td>Riz (paddy) ensemble</td>
<td>27,8</td>
<td>38,1</td>
<td>1,5</td>
</tr>
<tr>
<td>1988-90</td>
<td>36,9</td>
<td>1,5</td>
<td>1,37</td>
</tr>
<tr>
<td>2010</td>
<td>51,7</td>
<td>1,5</td>
<td>1,37</td>
</tr>
</tbody>
</table>

(*) Part de la surface dans chaque zone agro-écologique en % de la superficie totale récoltée en 1988-90.

Notes et études économiques n° 8, septembre 1998
L'évolution des rendements en France.

Comme l’a montré la figure 1, la progression des rendements du blé en France a été considérable durant les dernières décennies avec un quasi quadruplement entre 1950 et 1995, dont un quasi triplement depuis 1960. En moyenne mobile sur 3 ans, le rendement est passé de 18 q en 1950 à 69 q en 1995. Le gain a été en moyenne de 1,3 q par ha et par an, et même davantage en certaines régions (Picardie : 1,5 q/ha ; Champagne : 1,6 q/ha/an). Cette forte croissance a concerné les divers types de cultures (Fig.7). Mais la variabilité reste très forte entre les régions. Ainsi en 1996, année exceptionnelle pour certaines régions il est vrai :

- 5 départements ont eu un rendement en blé tendre supérieur à 90 q/ha : Pas de Calais (98 q/ha), Nord (97 q/ha), Somme (94 q/ha), Seine et Marne (93 q/ha), Aisne (91q/ha).
- 6 départements ont récolté moins de 35 q/ha : Corse du Sud (15 q/ha), Alpes-Maritimes (30 q/ha), Gard (32 q/ha), Pyrénées-Orientales (33 q/ha), Var (33 q/ha), Vaucluse (34 q/ha)

Dans les graphiques d'évolution des rendements (fig. 7), on a prolongé la droite de tendance des 35 dernières années dans les trois prochaines décennies – non pour dessiner les perspectives à venir qui peuvent être différentes en particulier s’il y avait un inflexissement de la croissance – mais pour visualiser ce que donnerait dans 30 ans la continuation de la tendance passée. Si elle se prolongeait, le rendement du blé en 2025 serait en moyenne proche de 110 q/ha en France (125 q/ha en Picardie, 130 q/ha en Champagne, 132 q/ha dans le Nord) ; le colza lui avoirisnerait 47 q/ha, le maïs 120 q/ha, les betteraves 100 t/ha.

Fig. 7 - Évolution des rendements de diverses cultures en France de 1960 à 1996 (q/ha).
Les facteurs explicatifs des écarts entre rendements observés et rendements maximums potentiels, et les moyens mis en œuvre pour réduire ces écarts dans l’amélioration des rendements des dernières décennies en France.

Une idée courante est que les écarts proviendraient de défauts de technicité : a) les cultivars actuels ne seraient pas assez productifs ; b) les agriculteurs ne seraient pas en moyenne à un niveau de technicité suffisant. Or ce ne sont pas là les facteurs les plus déterminants. Les **variétés vendues actuellement ont bien un potentiel d’environ 140 q de blé** (du moins pour celles cultivées dans la moitié Nord de la France, car celles cultivées au Sud, plus précoces peuvent avoir un potentiel un peu moindre), mais elles **n’ont pas nécessairement les caractéristiques pour échapper aux contraintes**. En effet pour obtenir un tel rendement, il faut que toutes les conditions soient parfaites du début à la fin sans aucun facteur limitant, autrement dit il **faudrait tout au long du cycle de végétation être à l’optimum sur tous les processus** (par exemple avoir une température optimale à chaque phase importante comme la différenciation, la floraison), ce qui est très rare si on fait une analyse fréquentielle du climat. Or il est très difficile à l’agriculteur d’agir sur la température et coûteux d’intervenir sur certains facteurs agro-climatiques comme le manque d’eau, les sols séchants, etc.

Comme signalé précédemment, si l’on cultive des variétés anciennes et des modernes dans des conditions similaires (sols fertiles, contrôle des adventices, des maladies et des ravageurs, avec aussi un filet de protection contre la verse pour les variétés anciennes), on observe que les variétés anciennes et modernes produisent à peu près la même biomasse totale grain + paille. Mais du fait de leur indice de récolte plus élevé, les variétés modernes ont un rendement en grain nettement plus haut. Elles ont également une floraison un peu plus précoces et une période de remplissage des grains un peu plus longue (Austin et al., 1989) (tableau 5).

Tableau 5 - Comparaison de cultures de blé de variétés anciennes et modernes dans des conditions similaires (essais réalisés en 1984-85-86), (Austin et al., 1989).

<table>
<thead>
<tr>
<th>Types de variétés</th>
<th>Date historique d'apparition de la variété</th>
<th>Biomasse totale produite (t MS/ha)</th>
<th>Indice de Récolte %</th>
<th>grain récolté (à 14 % MS) (g/ha)</th>
<th>Paille (t MS/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 variétés très anciennes</td>
<td>1830 à 1907</td>
<td>15,00</td>
<td>34</td>
<td>58,7</td>
<td>9,95</td>
</tr>
<tr>
<td>2 variétés anciennes</td>
<td>1908 à 1916</td>
<td>15,41</td>
<td>36</td>
<td>64,8</td>
<td>9,83</td>
</tr>
<tr>
<td>2 variétés intermédiaires</td>
<td>1953 à 1973</td>
<td>14,84</td>
<td>45</td>
<td>77,8</td>
<td>8,14</td>
</tr>
<tr>
<td>5 variétés modernes</td>
<td>1981 à 1986</td>
<td>15,88</td>
<td>51</td>
<td>93,6</td>
<td>7,84</td>
</tr>
</tbody>
</table>

L'amélioration des rendements observée en particulier depuis 1950 provient simultanément des gains génétiques et de l'évolution des techniques de culture :

- les progrès génétiques ont porté en particulier sur l'accroissement de l'indice de récolte (on a introduit par exemple des gènes de nanisme, les variétés actuelles ont ainsi des pailles courtes), sur une légère augmentation de la productivité intrinsèque et sur une moindre sensibilité aux contraintes avec les résistances à la verse, aux parasites, aux maladies, aux stress thermiques, etc. (Auriau et al. 1992). Ces gains génétiques sont évalués en général par l'écart de rendement sur un réseau d'essais représentatifs entre les variétés les plus cultivées (témoins) et les nouvelles variétés proposées.

- l'évolution des techniques de culture a permis d'agir sur la maîtrise des mauvaises herbes et de l'apport azoté, sur la verse, les maladies. On a aussi pu réaliser certains travaux en période optimale pour le semis, la récolte, les épandages grâce à l'accroissement de la puissance des matériels.
De la sorte la forte croissance des rendements entre 1950 et aujourd'hui a été obtenue en levant progressivement plusieurs facteurs limitants :

- la verse, facteur le plus limitant dans les années 1950 car elle empêchait d'accroître les doses d'azote et les densités. Pour l'éviter on a raccourci les tiges par voie génétique, puis ultérieurement par utilisation de molécules chimiques ayant cet effet : les raccourcisseurs permettent aussi d'épaissir la base de la tige en inhibant son allongement ce qui rend la plante plus résistante à la verse.

- les mauvaises herbes. Les herbicides ont permis l'élimination des adventices : dicotylédones en premier lieu, puis graminées qui concurrençaient le développement du blé et diminuaient fortement son rendement.

- la mauvaise maîtrise de l'apport azoté : vers le milieu des années 1970 et le début des années 1980, on a progressivement appris à mieux évaluer la fertilisation nécessaire selon l'objectif de rendement et les conditions agroépidémiologiques, à fractionner les apports et à les faire aux périodes les plus adéquates.

- les maladies en particulier avec l'emploi de fongicides qui s'est développé dans la décennie 1980. Les limitations dues aux maladies ont aussi été diminuées grâce aux résistances introduites dans les variétés. Auparavant les résistances variétales, puis les traitements des souches étaient permis de lutter contre les caries et les charbons, maladies fréquentes il y a plus de 40 ans.

Pour accroître les rendements aujourd'hui, il faudrait encore lever divers facteurs limitants :

- le déficit en eau. Or le blé n'est pas souvent irrigué en France, et cela ne devrait pas se développer dans la concurrence entre usages pour l'eau. L'un des intérêts du blé est d'ailleurs d'assez bien tolérer le manque d'eau comparativement à d'autres cultures, ce qui conduit à choisir de préférence à d'autres productions dans des zones un peu sèches. Cet aspect dû à l'intérêt relatif des diverses cultures possibles est essentiel pour comprendre certains niveaux de rendements ;

- l'organisation du travail. Pour obtenir un très haut rendement, il faut faire toutes les interventions et les apports d'intrants au meilleur moment. Or l'accroissement des surfaces par travailleur rend difficile de tout effectuer au stade optimal : le semis (assez précoce et en bonnes conditions), les épandages azotés, les divers traitements. Aujourd'hui quand on rencontre des carences azotées et un mauvais état structural du sol, cela est souvent lié à des problèmes d'organisation du travail et à la concurrence d'autres activités. Cela peut provenir aussi de conflits entre divers objectifs : ainsi les tassements de sol sous blé, préjudiciables à son rendement, sont souvent liés au semis de son précédent (poids, betterave). On cherche en effet à implanter ce dernier le plus tôt possible au printemps pour accroître sa productivité, ce qui entraîne un tassement car le sol n'est pas assez ressuyé. A l'automne on vise aussi à semer le blé le plus tôt possible à une période où le sol est encore assez sec et dur ; le travail est donc assez superficiel et le sol reste tassé sous le blé ;

- les parasites et maladies. Certes ils paraissent de mieux en mieux maîtrisés. Mais des accidents peuvent survenir. Ainsi en 1995, il s'est développé des viroses sur blé à cause de virus transmis par des pucerons qui se sont propagés à la faveur de l'hiver doux alors qu'on pensait les maîtriser. De même en 1975 et 1988-89, il y a eu des pertes sensibles de rendements dues à la rouille jaune du blé. Des accidents peuvent survenir car les parasites développent des résistances aux pesticides ou contournent les résistances introduites dans les variétés. En outre la pression sociale incite à limiter le niveau d'utilisation des pesticides. Cependant de nouvelles molécules phytosanitaires ou formes de lutte sont toujours recherchées avec un certain succès. Onespère ainsi que l'arrivée d'une nouvelle famille de fongicides à base de strobilurine permettra une lutte plus efficace contre la septoriose et la
fusariose des céréales. La strobilurine est inspirée de molécules naturelles synthétisées par des champignons des bois de certaines forêts et a été imitée par les firmes chimiques en lui conférant de nouvelles propriétés, en particulier en matière de stabilité. Une autre voie d’avenir est également de stimuler les défenses des plantes. Mais on ne dispose pas de fongicide très efficace contre le piétin échaudage, maladie des racines avec nécrose et perturbation de l’alimentation hydrique et minérale, favorisé par les successions chargées en céréales.

Facteurs et conditions limitant le rendement du blé dans le Bassin parisien

Le rendement du blé dépend de différentes composantes:
- nombre de plantes par m²,
- biomasse aérienne début montaison,
- nombre d'épis par m²,
- nombre de grains par m²,
- poids moyen d'un grain.

A chaque phase du cycle certains facteurs du milieu peuvent être limitants comme le montre le tableau suivant inspiré des travaux de J. M. Meynard, agronome à l’ENRA:

<table>
<thead>
<tr>
<th>Phase</th>
<th>Sanctionnée par:</th>
<th>Principaux facteurs du milieu pouvant être limitants</th>
</tr>
</thead>
</table>
| Levée-début montaison | - nombre de plantes/m²
 | - biomasse aérienne/m² au stade ep 1 cm | - température
 | | - rayonnement intercepté
 | | - azote |
| début montaison-floraison | - nombre d'épis/m²
 | - nombre de grains/m² | - rayonnement intercepté
 | | - azote |
| | | - eau |
| Floraison-maturité | - poids moyen d'un grain | - rayonnement intercepté
 | - rendement | - maladies cryptogamiques
 | | - verse |

En définitive les facteurs expliquant les écarts actuels entre rendements observés et potentiels sont notamment (cf. encadré):

- les facteurs agro-climatiques (température, pluviométrie aux moments nécessaires) sur lesquels il est difficile ou coûteux d’agir ; ils jouent de façon variable selon les années et les régions ;

- une mauvaise maîtrise de certaines interventions comme l’apport azoté, les traitements, l’état du sol, la date de semis, etc. Elle peut être due notamment à des problèmes d’organisation du travail avec l’augmentation de la surface par travailleur ou à des connaissances techniques insuffisantes bien que le niveau de formation des agriculteurs en ce domaine ait augmenté, ou bien encore à la concurrence entre activités. Dans un nombre assez important d’exploitations, elle provient ainsi du fait que la culture du blé est pour l’agriculteur secondaire par rapport à d’autres productions principales de l’exploitation (élevage, cultures spéciales, etc.) ou d’autres activités en cas de diversification : on apporte alors relativement moins de soins à la culture du blé ;

- l’apparition chez les pathogènes ou les ravageurs de nouvelles résistances aux traitements, ou bien de nouvelles souches pathogènes insensibles aux pesticides utilisés.
On pourrait peut-être contourner à moyen ou long terme ces facteurs par exemple en développant des plantes tolérant mieux les stress en matière de sécheresse, température, parasites. C’est notamment un domaine où le transfert de gène et les biotechnologies peuvent permettre des avancées. Mais cela ne risque-t-il pas d’affecter le potentiel productif compte tenu des interactions ? Durant les dernières décennies certaines variétés résistantes que l’on a mises au point (par exemple Renan pour le blé) avaient un potentiel de rendement moins élevé que les autres, ce qui a limité leur diffusion. Quant à la maîtrise des interventions, bien qu’elle puisse être améliorée par certains automatismes, elle est rendue plus difficile par l’agrandissement des exploitations : avec une vaste superficie il peut s’avérer difficile d’intervenir sur chaque parcelle au moment le plus adéquat.

Ainsi donc les écarts entre rendements observés et rendements maximums possibles sont fort variables dans le monde et ont plusieurs causes :

- aux USA par exemple le rendement moyen en blé est bas (25 q/ha) car cette production est faite de façon extensive dans des régions relativement sèches, dans les Grandes Plaines (Kansas notamment); en effet les zones les plus humides sont affectées à d’autres cultures ayant une marge à l’ha plus élevée : ainsi le rendement moyen du maïs en "1995" a été de 79 q/ha. En outre une partie du blé provient de régions à hiver très rigoureux (Dakota, Montana) ce qui induit la culture de blé de printemps moins productif (Charvet 1996).

- dans les pays en développement les rendements plutôt bas proviennent en plus d’un cumul de facteurs variant selon les régions : fragilité des terres, dégradation des sols, manque d’eau ou irrégularités de la pluviométrie, ressources financières insuffisantes des agriculteurs pour l’achat de certains intrants, manque de formation ou d’incitations à produire davantage, etc. (Griffon, Marty, 1993).

- en France où les rendements sont élevés comparativement à la moyenne mondiale, les écarts par rapport au potentiel sont dus à l’existence de contraintes qui sont désormais relativement difficiles à lever : facteurs agro-climatiques, maîtrise parfaite des interventions, risque de développement de pathogènes nouveaux ou résistants aux traitements. Comme on l’a noté pour les USA, les terres les plus productives peuvent être affectées à des cultures qui les valorisent mieux comme la betterave sucrière ou la pomme de terre, cultures à forte marge brute. Le rendement des productions faites en zones moins favorisées est alors limité par leur potentiel, mais également par les soins qu’y apporte l’exploitant. Là aussi en cas de concurrence entre travaux à la même période, on choisit généralement de faire en priorité ceux qui "rapportent le plus", ce terme pouvant être pris avec différentes significations. De la sorte la concurrence dans l’affectation des terres ou des ressources disponibles contribue à expliquer que certains rendements soient bien moins élevés que leur potentiel. En outre accroître le rendement n’est pas un objectif en soi, mais plutôt un moyen. Les recherches en amélioration génétique et agronomie ainsi que les pratiques des agriculteurs visent de ce fait plusieurs objectifs et non seulement l’obtention d’un haut rendement.
Chapitre IV - LES POSSIBILITÉS TECHNIQUES D’AUGMENTER LES RENDEMENTS SANS DÉGRADER L’ENVIRONNEMENT.

Si dès maintenant les variétés utilisées ont un potentiel de rendement en grain proche de 140 q/ha, les résultats réels obtenus sont moitié moindres aujourd’hui en France malgré leur quadruplement depuis les lendemains de la deuxième guerre mondiale. Depuis 1960 on y a observé une progression annuelle de 1,3 q/ha. Est-il possible d’accroître encore les rendements en France ? Quelles sont les orientations de la recherche agronomique en ce domaine ?

Les voies possibles pour accroître les rendements

A partir des facteurs expliquant les écarts entre rendements potentiels et réels, on pourrait envisager d’agir de trois façons différentes :

a) accroître le potentiel maximum total, ce qui permettrait d’obtenir plus de 25 t de MS par ha. En ce domaine les progrès sont très limités : à la latitude du Bassin parisien par exemple on ne peut guère dépasser actuellement 26 t de MS/ha. D’ici 20 à 30 ans on ne devrait guère accroître le rendement de la photosynthèse ; par contre ultérieurement ce peut être possible en améliorant le fonctionnement enzymatique dans celle-ci grâce aux connaissances apportées par la biologie moléculaire. Cette dernière peut permettre de repérer puis d’agir sur les enzymes clés intervenant dans la transformation de l’énergie lumineuse dans la plante et dans la remobilisation pour la formation du grain.

b) accroître l’indice de récolte pour lui faire dépasser au moins 50 %. Mais cela paraît difficile même dans l’avenir. On peut cependant allonger la part du cycle se déroulant après la floraison ce qui permettrait d’accroître le rendement en grain à long terme et par là d’améliorer l’indice de récolte.

c) améliorer le rendement en grain en levant les contraintes empêchant d’obtenir le rendement maximal potentiel.

Les facteurs expliquant les écarts actuels entre rendements observés et potentiels peuvent-ils être levés ? Il faudrait mettre au point des variétés ayant les moyens d’échapper aux contraintes climatiques et aux divers pathogènes, et avoir également une maîtrise parfaite des interventions culturales :

- Il est difficile d’agir sur les facteurs climatiques eux-mêmes. Le changement climatique global pronostiqué pour le 21ème siècle peut comme on l’a vu avoir des effets variés dont certains comme l’accroissement de la teneur en gaz carbonique vont dans le sens d’une augmentation des rendements, mais d’autres en sens opposé : hausse des températures, durcissement des climats tempérés, bouleversement du régime des pluies, risque de sécheresse, ou de submersion de certaines zones fertiles, etc. Dans le cadre du climat actuel, on peut envisager de mettre au point des variétés davantage résistantes à certains stress climatiques (froid, chaleur, sécheresse, etc.), mais l’une des difficultés alors est qu’on ne connait pas à l’avance quand on sème le temps qu’il va faire pour savoir quel type de variété on doit utiliser une année donnée ! La première limite vient donc des aléas climatiques, les prévisions météorologiques ne pouvant dépasser quelques jours ; cette limite ne paraît pas devoir être levée prochainement car une percée scientifique qui permettrait de prévoir le climat près de 9-10 mois à l’avance ne paraît pas actuellement proche.

On peut cependant chercher à mieux adapter les variétés aux grandes zones agroclimatiques. Certains agronomes pensent qu’on devrait pouvoir améliorer le comportement du blé en zone assez chaude et sèche. Des travaux sont menés en ce domaine au niveau mondial, par exemple dans le Bassin méditerranéen, au centre international de recherche agronomique ICARDA (International Center for Agricultural Research in the Dry Areas) situé en Syrie, ainsi qu’en France à l’INRA et à l’Ecole Supérieure Agronomique de Montpellier (Bellassen, Thiis, Monneveux, 1995). On cherche notamment à diminuer la variabilité des rendements en zones sèches, mais il est difficile d’avoir un blé cumulant régularité des rendements en conditions sèches et productivité élevée car les mécanismes de tolérance au stress hydrique (fermeture des stomates, augmentation du système racinaire, etc.) induisent en général une baisse de rendement.

Notes et études économiques n° 8, septembre 1998
c2- En ce qui concerne les maladies il serait illusoire de penser que tous les problèmes de parasites et maladies seront maîtrisés demain. Les adaptations des parasites et ravageurs, les évolutions de leurs populations, le contournement par les pathogènes des résistances variétales ou le développement de ravageurs résistants aux pesticides paraissent en effet devoir l'empêcher ; en outre la pression sociale va plutôt actuellement dans le sens d'une limitation des traitements. Cependant des avancées importantes ont été faites en matière de point de variétés résistantes, mais ces dernières ont souvent un rendement un peu moindre. Toutefois l'hybridation ouvre des perspectives en ce domaine car elle permet d'introduire rapidement dans un même génotype des résistances complémentaires (1).

c3- Le progrès génétique par les méthodes de la sélection classique continuera encore, mais ses objectifs sont désormais assez diversifiés car les demandes envers les produits agricoles sont variées, ne serait-ce qu’en fonction de leur utilisation finale. Les applications des biotechnologies devraient rendre possibles des avancées importantes en productions végétales (cf. encadré). Elles ont déjà entraîné un progrès génétique plus rapide. Par ailleurs pour certaines espèces la transgénèse commence à permettre la mise au point de nouvelles variétés résistantes à certains pathogènes ou possédant de nouvelles caractéristiques qualitatives. Toutefois jusqu'à présent, le blé a été très peu concerné par la transgénèse car elle s'y avère beaucoup plus difficile que pour d'autres plantes. Entre 1986 et 1995 les essais en plein champ de plantes transgéniques ont ainsi concerné le plus souvent le maïs, le colza, la pomme de terre, la tomate, le soja, le coton et le tabac plus aisés à transformer génétiquement (James, Krattiger 1996). Des résultats ont cependant été obtenus récemment pour le blé et on devrait voir apparaître bientôt un blé résistant à un herbicide, le glyphosate (Round Up) produit par la firme Monsanto. Dans ce cas la plante résistante à l'herbicide est cultivée avec l'herbicide en question, ce qui détruit toutes les adventices. Toutefois ce caractère de résistance est d'un intérêt agronomique assez limité, son développement s'explique plutôt par le fait que ce type de transgénese, relativement plus aisé que les autres, a été mis au point plus précocement et pourra servir à rentabiliser les investissements faits par les firmes dans les biotechnologies tout en continuant à vendre aussi des produits phytosanitaires. Dans le cas du glyphosate, molécule peu rémanente et fort peu polluante, il paraît à beaucoup d'agronomes dangereux de l'employer sur de vastes surfaces céréalières car cela accroît le risque de favoriser l'apparition de résistances à cette molécule actuellement fort intéressante ; elle perdrait alors son intérêt. On poursuit par ailleurs des recherches pour introduire dans le blé la résistance à un autre herbicide, le glufosinate. Par ailleurs un enrichissement en certains types de protéines est envisagé. De façon générale on attend beaucoup de la transgénèse pour pouvoir introduire dans les plantes diverses caractéristiques qualitatives qui paraissent souhaitables pour les utilisateurs finaux (transformateurs ou consommateurs), ainsi que pour l'adaptation à certains milieux et la résistance à divers ravageurs. Des équipes américaines sont parvenues en 1996 à de premiers résultats pour le blé en ce qui concerne l'expression d'un gène codant pour une sous-unité de haut poids moléculaire de la gluténine (une protéine de réserve du grain) qui est un déterminant important de la qualité boulangère de la farine.

1 En matière de rendement l'apport de l'hybridation varie selon les cultures. Dans le cas du blé ou de l'orge où la sélection naturelle a favorisé les structures homozygotes, certains généticiens estiment que l'hybride n'apporte pas un plus décisif. Par contre pour une culture comme le colza, l'apport est significatif en termes de rendement avec un gain d'environ 25 % ; le colza est en effet une plante non strictement autogame, mais en partie allogame. Les biotechnologies peuvent permettre la mise au point de nouveaux hybrides, comme cela a été le cas pour le colza avec la variété Synergy.

Notes et études économiques n° 8, septembre 1998
Les apports des biotechnologies en matière d’amélioration génétique

Les biotechnologies ont déjà permis et devraient permettre au 21ème siècle des apports importants :

1) Une connaissance et une compréhension des phénomènes qui interviennent dans la physiologie et le développement des plantes, par exemple en matière de fonctionnement enzymatique. Grâce à cela on peut savoir où et comment intervenir pour faire des modifications dans le sens souhaité. Par exemple pour le colza la bonne connaissance de la voie de synthèse des acides gras permet d’envisager de transférer (ou de supprimer l’expression) d’un certain nombre d’enzymes-clés de cette synthèse pour faire un colza riche en acide oléique ou laurique ; ceci est important pour répondre à la demande des industriels en matière de produits spécifiques. De même en matière de résistance aux parasites, la biologie moléculaire a permis de comprendre comment fonctionnaient les gènes de résistances (en particulier aux virus) ce qui permet de donner des indications pour agir à ce niveau : on devrait pouvoir de la sorte mettre au point de nouvelles variétés résistantes.

2) Le deuxième apport essentiel des biotechnologies est le transfert de gène qui permet théoriquement de transférer un gène intéressant d’une espèce à n’importe quelle autre, faisant fi des barrières entre espèces et entre règnes : en effet l’échange de gène par croisement sexué qu’on utilise depuis plusieurs millénaires dans la sélection et l’amélioration des espèces ne peut se faire qu’à l’intérieur d’une même espèce ou entre espèces extrêmement proches. Le génie génétique permet avec la transgénèse de franchir cette limite et donc de puiser les gènes intéressants dans un pool immense. Toutefois il faut repérer les gènes, pouvoir les transférer et obtenir leur expression sans perturbation du reste du fonctionnement de la plante ce qui n’est pas toujours aisé, notamment pour certaines plantes (le blé s’est montré ainsi jusqu’à présent assez difficile à transformer ; par contre divers transferts de gène ont déjà été réussis sur le maïs et plus récemment sur le riz).

3) L’autre apport des biotechnologies est un gain de temps dans la sélection, une accélération du progrès génétique. Ceci est possible d’une part par l’haplodiploïdisation qui permet d’arriver plus vite à l’homozigote et donc à la variété finale : sur un cycle de 10 ans on gagne deux ans. Par ailleurs la sélection assistée par marqueur permet aussi un gain de temps. Ainsi pour un gène difficile à identifier on travaille sur son marqueur plus que sur lui-même : lors de l’analyse on repère un marqueur moléculaire très lié à un gène d’intérêt agronomique difficile à observer et mesurer, et on travaille sur le marqueur, on introduit marqueur et gène d’intérêt agronomique en même temps car cela est plus facile que de chercher à intervenir sur le gène d’intérêt agronomique lui-même. La cartographie du génome pourrait rendre possible une sélection assistée par marqueur conduisant à rendre cette dernière un peu plus rapide.

On notera que cet apport des biotechnologies se rajoute à la sélection classique, y apportant des outils nouveaux extrêmement intéressants et multipliant les possibilités d’introduction de nouveaux gènes, mais cela ne se substitue pas à la sélection classique : il faut toujours faire ensuite des expérimentations avec la plante entière pour voir comment la nouvelle variété se comporte au champ sous diverses conditions de milieu. Toutefois le génie génétique peut comporter aussi des risques et pose divers problèmes d’acceptabilité sociale, ce qui fait que jusqu’à présent dans l’Union Européenne fort peu de plantes transgéniques ont été autorisées à être commercialisées (Bonny 1996, 1998).

c- La mauvaise maîtrise de certaines interventions culturales n’est pas aussi aisée à améliorer qu’on pourrait le penser. En effet ce n’est pas seulement un problème de technicité qui serait levé avec l’augmentation du niveau de formation, c’est aussi l’organisation du travail et l’interaction entre activités qui sont concernées. Avec de grandes surfaces par travailleur, il est difficile de tout traiter au bon stade. Par exemple pour avoir un bon rendement il faut semer tôt et en bonnes conditions, il faut effectuer épandages et traitements au moment optimal, ce qui n’est guère possible pour chaque parcelle quand un travailleur doit s’occuper seul de 200 ha, malgré l’accroissement de puissance des tracteurs et de largeur de travail des matériels ! Toutefois comme on le verra, un certain nombre d’outils de pilotage en cours de mise au point pourrait donner des indications sur les dates et les types d’interventions nécessaires, ainsi que sur les doses à apporter.
L’évolution vers un meilleur raisonnement des intrants et un pilotage des apports.

L'orientation actuelle des recherches en matière de conduite des cultures et des élevages, et même des pratiques des agriculteurs, porte notamment sur deux aspects :

- ajuster finement les apports d'intrants aux besoins des productions de plus en plus de façon localisée dans le temps (selon le stade de végétation ou de croissance) et dans l'espace (selon les hétérogénéités dans les parcelles) : c'est l'agriculture de précision fréquemment évoquée aux États-Unis depuis plusieurs années et désormais aussi en France.
- adapter les conduites et les productions en fonction de leurs utilisations finales.

Cette évolution répond à plusieurs préoccupations, en particulier éviter les gaspillages d'intrants, réduire les risques de pollution, livrer un produit de qualité adapté à l'emploi qui en sera fait. Elle correspond plus largement à l'évolution actuelle de l'agriculture marquée par un souci croissant de compétitivité, mais aussi par la nécessité de mieux prendre en compte la demande de la société en matière de qualité et de respect de l'environnement (Bonny 1997).

Il faut souligner un point connu mais souvent peu pris en considération hors du milieu des agriculteurs et des agronomes : la forte variabilité de la réponse en matière de rendement à la dose d'engrais azoté. L'agriculteur adopte généralement une logique d'assurance car il ne sait pas quand il applique ses techniques quel sera le rendement permis par le climat, ni donc les besoins d'azote, ni non plus les risques de maladie. Quand on observe a posteriori la réponse du rendement à la dose d'engrais azoté sur diverses parcelles et sur plusieurs années, une très forte variabilité apparaît même pour un blé ayant le même précédent cultural dans une même région, avec les mêmes variétés (Meynard, Papy 1993) : pour une même dose d'azote le rendement peut varier du simple au double. Quelle dose d'engrais apporter alors ? Le choix de l'agriculteur ira sans doute vers des doses élevées vu les rapports de prix entre blé et engrais car il risque de perdre beaucoup plus en appliquant une dose trop faible qu'une dose trop élevée.

La recherche agronomique vise de ce fait à mettre au point des règles de décision et des plans d'action. **Le conseil ne serait plus normatif** (appliquer telle dose à tel moment), mais **une aide à la décision** formulée au cas par cas (à la parcelle, à l'année) : si le climat, le sol, la culture ont telle et telle caractéristique, alors la dose à appliquer est de tant. Il faut également que ces règles de décision fassent un ensemble cohérent, un plan d'action (Meynard 1994). Dans le cadre de cet objectif de formuler des règles de décision et des plans d'action, la recherche agronomique travaille à la mise au point de logiciels d'aide à la décision stratégique pour la conduite des cultures : Décible (élaboré par l'INRA, l'ITTCF, l'INAPG) qui concerne la culture du blé est le plus avancé (Aubry et al. 1997).

Les divers moyens pour adapter les apports d’intrants aux besoins des productions, et la conduite de la culture aux objectifs visés, sont notamment :

- le choix de la variété, la densité et la date de semis ;
- pour la fertilisation azotée, son raisonnement selon la méthode du bilan prévisionnel mise au point dans les années 1970 et le fractionnement des apports selon les périodes optimales. Plus récemment est apparu le dosage de la teneur en nitrate dans le jus de base de tige (à l'aide de la méthode Jubil ou Ramsés) qui permet d'évaluer si un complément de fertilisation azotée est nécessaire (méthode datant de 1993 qui commence à se diffuser). A l'heure actuelle des recherches sont menées sur une évaluation du potentiel de rendement dès le stade « épi à 1 cm », au début du taillage (fin janvier environ) : on cherche à mesurer le taux de couverture du sol par le blé, d'où on déduit l'indice foliaire et le rendement potentiel, ce qui permet d'évaluer le besoin en azote de la culture. Pour cela il faudra donc disposer d'un capteur sur le tracteur indiquant le taux de couverture du sol par le blé lors d'un passage dans la parcelle, ou sinon l'évaluer visuellement.
pour les traitements phytosanitaires, on peut utiliser des modèles prévisionnels du développement des maladies et des ravageurs établis à partir des caractéristiques agroclimatiques diffusées par le Service de la Protection des Végétaux. L’agriculteur peut aussi faire des observations au champ et déceler certaines maladies avant que les symptômes soient visibles à l’œil nu, à l’aide de kits de diagnostic basés sur les anticorps monoclonaux (cf. par exemple le test piétin verse de Du Pont et le kit septorioso), toutefois certains les jugent insuffisamment fiables. Des travaux sont aussi menés pour tenter de reconnaître les mauvaises herbes par des capteurs, ou du moins le niveau d’infestation, et en faire découler un épandage d’herbicides localisé.

pour l’irrigation diverses méthodes ont aussi été mises au point pour évaluer les besoins en eau des cultures et faire les apports en conséquence (cf. Bonny 1993).

Ainsi, outre les méthodes déjà classiques de fertilisation raisonnée basées sur un bilan annuel des apports et des besoins en éléments fertilisants, on même désormais des recherches sur un pilotage des cultures avec une adaptation presque au jour le jour des épandages en fonction de l’objectif de production et de l’état actuel de la culture. L’évaluation peut se faire par observation-diagnostique-calcu des apports effectué par l’agriculteur lui-même, ou bien automatiquement par un capteur embarqué sur le tracteur. Le capteur permettrait d’établir les besoins locaux des parcelles en azote ou traitements et de déclencher la dose de traitement adaptée là où cela est nécessaire. Ainsi la couleur des feuilles de blé pourrait peut-être être utilisée pour évaluer s’il y a besoin d’un apport azoté et en quelles zones précises de la parcelle. De même la détection d’adventices peut déclencher soi manuellement soit automatiquement l’épandage d’herbicide. Ces interventions localisées en fonction des besoins et des observations peuvent conduire à de meilleurs rendements (car on optimise en chaque zone et non seulement globalement, en prenant en compte les hétérogénéités intraparcellaires), mais surtout à une meilleure efficacité des apports car ils sont mieux adaptés aux besoins au lieu d’être systématiques et standards, ce qui entraîne des gaspillages. C’est en cela que l’on parle d’"agriculture de précision”. Encore faut-il que l’indicateur de l’état de la culture soit suffisant pour prendre une décision, et que divers types de capteurs soient mis au point ce qui n’est pas toujours aisé, par exemple pour la reconnaissance des mauvaises herbes. Il faudra également que le coût du dispositif ramené au quintal soit faible vu l’impératif de produire à bas prix.

Cette evaluation des intrants adéquats (engrais, traitements) à apporter à la bonne dose et au moment optimal peut être faite par l’agriculteur lui-même à partir de ses connaissances et avec l’aide de divers capteurs. Mais des conseils en ce domaine peuvent aussi être diffusés aux exploitants par les techniciens de Chambres d’agriculture ou de CETA. Ils se basent sur des modèles écophysiologiques de développement des plantes qui décrivent et suivent finement l’évolution de la culture en fonction des conditions agroclimatiques et qui permettent de prévoir les interventions à faire en termes de dates, de doses et de choix des intrants.

D’autres méthodes plus simples à mettre en œuvre mais sans doute moins fiables viennent aussi d’être mises sur le marché pour évaluer le besoin en azote d’une culture. Ainsi Hydro-Agri, grande firme productrice d’engrais, propose depuis 1995 un outil de diagnostic rapide de la nutrition azotée des céréales : l’Hydro N-Tester. Il comprend une cellule photométrie qui mesure la teneur en chlorophylle des feuilles car elle est liée à leur teneur en azote ; à partir de là l’appareil indique l’apport azoté à faire. Toutefois divers facteurs autres que la nutrition azotée influent sur l’intensité de la couleur d’une feuille (variété, carences en d’autres éléments, stress climatiques), aussi les résultats doivent-ils être interprétés avec précaution.

Par ailleurs ont été proposés sur le marché des logiciels aidant à établir le programme de fertilisation des parcelles à partir de la prise en compte des différents éléments du bilan apports/besoins. Mais assez peu d’agriculteurs ont acquis de tels logiciels. En outre pour simplifier le prélèvement des échantillons de terre, un prélèveur de sol développé par une filiale d’Hydro-Agri a été mis au point : monté sur certains mini-tracteurs, il permet d’effectuer rapidement des prélèvements, ce qui pourrait réduire les contraintes de temps en ce domaine quand on cherche à doser les relictus azotés dans le sol.
Ainsi un certain nombre de moyens et d’outils ont été élaborés permettant d’ajuster les apports d’intrants aux besoins des cultures. Ils sont issus de la recherche publique, mais aussi des firmes de l’agrofourniture (engrais, machinisme, phytosanitaires). Cette orientation est déjà ancienne dans la Recherche, mais plus récente pour les autres organismes (Bonny 1994). Elle s’y explique notamment par les accusations de pollutions concernant l’agriculture et les intrants qu’elle utilise, et par là l’agro-industrie. Pour améliorer leur image de marque auprès du grand public, les firmes se sont engagées dans la promotion de l’agriculture raisonnée. Le syndicalisme agricole majoritaire, après avoir nié dans un premier temps les accusations de pollution par l’agriculture, s’est finalement aussi engagé dans cette voie – à condition que le revenu agricole ne soit pas diminué –, pour éviter la aussi une dégradation de l’image de marque : il participe aux opérations Ferti-Mieux, au CORPEN et à l’association FARRE (Forum de l’Agriculture Raisonnée Respectueuse de l’Environnement) (Bonny 1997b). Les instituts techniques s’intéressent aussi au pilotage des apports d’intrants notamment comme moyen de parvenir au rendement visé, même s’ils restent plutôt productivistes tout en étant sensibilisés à la nécessité de limiter les pollutions pour éviter les accusations en ce domaine.

Les agriculteurs vont-ils adopter ces méthodes proposées pour ajuster les apports d’intrants aux besoins des cultures ? La méthode des bilans prévisionnels pour la fertilisation azotée mise au point il y a 20 ans a nettement influencé les pratiques de fertilisation des agriculteurs et les conseils qui leur sont donnés ; toutefois peu d’agriculteurs font un calcul rigoureux parcelle par parcelle car cela prendrait trop de temps : ils utilisent des réseaux de référence ou suivent les conseils des techniciens en matière d’estimation des reliquats azotés dans le sol ou se réfèrent à diverses données, ce qui reste un peu approximatif. Ce sont surtout les agriculteurs de pointe qui font un dosage des reliquats dans leurs parcelles, au moins dans certaines parcelles représentatives. Pour les exploitants le critère économique est prépondérant en général. Le raisonnement des apports n’est adopté que si la marge de la culture n’est pas affectée, ou est améliorée. Par contre les méthodes qui font courir un risque de perte de rendement et de revenus seront écartées ; il faut dire d’ailleurs que les techniciens ne les préconisent pas pour éviter d’être discrédités aux yeux des exploitants s’il y avait perte de récolte et de revenu. De plus les agriculteurs eux-mêmes ne veulent pas être raillés par leurs voisins s’ils adoptaient une innovation qui échouerait (par exemple l’emploi d’un kit de diagnostic peu fiable conduisant à ne pas faire un traitement et à avoir une forte attaque de maladie). En outre ils perçoivent souvent les recommandations en matière de non-pollution comme une contradiction par rapport aux conseils promus naguère et comme une intrusion de la part des urbains, ou pire des « écologs », dans la gestion de leur territoire et la conduite de leurs exploitations (Cattan, Mermet, 1995). Le message en matière de raisonnement des apports a plus de chance de passer si l’intérêt économique est mis en avant mais il faut que ce dernier soit réel !

Ainsi donc la recherche en agriculture évolue vers un pilotage fin des apports d’intrants aux besoins des cultures d’une part dans le temps en fonction des conditions agroécologiques et de l’état de la plante, d’autre part dans l’espace en fonction des hétérogénéités entre parcelles et à l’intérieur de chaque parcelle. Compte tenu de ce pilotage plus fin, on peut parler d’un début de « cyberagriculture ». Mais ces méthodes ne seront adoptées largement que lorsque leur fiabilité et leur intérêt économique seront certains et si elles ne réclament pas trop de temps. Elles devraient contribuer à une meilleure efficacité et à une réduction des écarts entre rendements obtenus et objectifs visés.

Notes et études économiques n° 8, septembre 1998
Chapitre V - LA CROISSANCE DES RENDEMENTS DEMEURE-T-ELLE L’OBJECTIF ESSENTIEL DES AGRICULTEURS EN FRANCE ?

Les critères de choix du type de conduite des cultures.

Quels rendements va-t-on viser demain, en faisant l’hypothèse que les techniques pour y parvenir seront disponibles et pourront être adoptées ? De plus en plus, compte tenu du changement du contexte socio-économique global, l’agriculteur doit prendre en compte plusieurs critères simultanément ce qui l’amène à viser plusieurs objectifs (cf. Meynard 1998). Ainsi une forte marge brute est généralement recherchée, mais il ne faut pas oublier que cela concerne l’ensemble de l’exploitation et non chaque culture prise isolément compte tenu des interactions. Par ailleurs l’objectif d’une forte marge brute ne correspond pas nécessairement à celui du rendement maximal comme on l’a déjà noté, et cela d’autant plus le critère de qualité prend de l’importance et que le paiement des produits en fonction de celle-ci se développe. L’agriculteur peut rechercher aussi une variabilité interannuelle faible pour éviter un risque trop important dû aux aléas. Pour ceux qui visent les marchés mondiaux il s’agira aussi d’être compétitif au niveau du coût de production par quintal ou des conditions proposées aux acheteurs. L’agriculteur peut rechercher également un temps de travail plus faible, et une répartition de celui-ci de façon à ce que le système de production soit viable. La préservation de l’environnement peut enfin devenir un critère pris en considération, eu égard à la pression sociale en ce domaine, aux réglementations qui se mettent en place et peut-être demain à un paiement d’aides subordonné au respect de « bonnes pratiques agricoles ».

Or différents facteurs eux-mêmes en interaction jouent sur ces critères, en d’autres termes l’incertitude est forte sur certaines tendances, notamment sur l’évolution des prix du blé, sur le niveau de la demande mondiale en céréales à satisfaire compte tenu des potentiels de production de divers pays et de la concurrence entre exportateurs, sur le climat pour la campagne en cours mais aussi à moyen et long terme en raison du changement climatique probable au prochain siècle, sur l’importance de la pression environnementale, et enfin en matière de politique économique sur l’évolution des aides et leurs critères de conditionnalités. Il faut donc prendre en considération simultanément plusieurs objectifs parfois contradictoires entre eux et qui en outre pourront se modifier en raison de l’incertitude sur leurs déterminants.

Parmi les facteurs influençant le niveau d’intensification (c’est-à-dire la recherche de rendements plus ou moins élevés) figurent en premier lieu les rapports de prix qui ont un rôle essentiel pour l’agriculteur. Or un débat existe en ce domaine : au niveau des prix des années 1990 par exemple, vaut-il mieux viser le rendement maximum possible, ou un rendement un peu plus bas avec la conduite culturale adaptée à l’objectif de production ? Les résultats publiés à ce sujet paraissent à priori variables :
– les essais expérimentaux montrent en général l'intérêt de conduite raisonnée, voire intégrée visant un rendement plus faible que le maximum atteignable, dans certains cas même avec le niveau des prix de 1990 ou antérieur, mais surtout avec la diminution des prix du fait de la réforme de la PAC : la marge est le plus souvent meilleure avec une conduite raisonnée, et le coût de production variable (coût des intrants rapporté au quintal produit) est également plus bas avec celle-ci. Ce sont notamment les résultats obtenus dans les essais réalisés ou dirigés par J.M. Meynard (Meynard, Papy 1993 ; Saulas 1993) (tableau 6a et 6b), ainsi que ceux qui ressortent de la synthèse d’essais menés par l’ITCF dans les régions Nord-Picardie et Normandie de 1990 à 1993 (Robert 1995) (Tabl. 7a). Les travaux de Ph. Viaux comparant des systèmes intégrés à des systèmes conventionnels montrent aussi en moyenne une marge nette à l’ha légèrement meilleure pour les systèmes intégrés : dans ce cas l’approche est plus complète car on considère la rotation culturale durant plusieurs années et les charges de mécanisation sont également dûment prises en compte (Viaux, Rieu 1995). De tels résultats se retrouvent aussi dans des régions à potentiel plus faible : des essais menés en Poitou-Charentes par la Chambre d'agriculture et l’ITCF entre 1991 et 1995 montrent que l’itinéraire technique raisonné procure en moyenne la meilleure marge et permet un coût de production plus bas qu’une conduite intensive (Chambre d'agriculture de Poitou-Charentes 1996) (tableau 7b).

– d’autres études fondées sur l’analyse des résultats d’un certain nombre d’exploitations en France tendent à indiquer au contraire que les hauts rendements continuent à assurer une meilleure marge. Ce sont par exemple les résultats qui ressortent du RICA pour les années 1991 à 1994 (tabl. 8). Dans ce cas la marge brute et le coût de production du blé ont été établis par un modèle économétrique répartissant les coûts entre les différentes productions des exploitations (ce qui donne des résultats moins fiables que ceux obtenus en établissant directement des charges et des marges à partir de relevés et de données de production ; en revanche l’échantillon est relativement vaste). Il apparaît que dans les exploitations à hauts rendements, la marge à l’ha est meilleure, le coût des intrants par quintal produit relativement plus faible que dans celles ayant de bas rendements. En ce qui concerne le coût total (charges variables et charges fixes par quintal), les résultats sont plus nuancés. De même les références fournies par D. Teyssier à partir de données d’experts dans son « Index des prix et des normes agricoles » publié chaque année font apparaître des résultats meilleurs dans la classe haute des rendements que dans la classe basse. Les diagnostics Opticoop des coopératives adhérentes à l’UNCAA (1) tendent aussi à faire ressortir que les rendements élevés continuent à assurer une meilleure marge à l’ha et un plus bas coût par quintal obtenu.

Tableau 6a - Comparaison des marges brutes et de la variabilité du rendement pour deux itinéraires techniques du blé plus ou moins intensifs (Meynard, Papy, 1993)
(28 expérimentations réalisées de 1982 à 1986 dans le Noyonnais et le Soissonnais)

<table>
<thead>
<tr>
<th>Fertilisation azotée (kg N/ha)</th>
<th>Conduite intensive visant le rendement maximal (80-90 q/ha)</th>
<th>Conduite plus extensive visant la borne inférieure du potentiel (65-75 q/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de traitements fongicides</td>
<td>175 Supérieur ou égal à 2</td>
<td>130 selon observations</td>
</tr>
<tr>
<td>Fréquence d’obtention des meilleures marges selon l’année de référence pour le prix du blé:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>12/28</td>
<td>16/28</td>
</tr>
<tr>
<td>1986</td>
<td>7/28</td>
<td>21/28</td>
</tr>
<tr>
<td>1991</td>
<td>5/28</td>
<td>23/28</td>
</tr>
</tbody>
</table>

1 Les diagnostics Opticoop sont des enquêtes portant sur une à quelques centaines de parcelles de blé d’une même région effectuées par des groupes coopératifs adhérents à l’UNCAA (Union nationale des coopératives agricoles d’approvisionnement). On relève chez les agriculteurs et les parcelles concernées toutes les pratiques culturales et on établit un bilan technico-économique de la culture.

Notes et études économiques n° 8, septembre 1998

<table>
<thead>
<tr>
<th>Objectif de rendement (q/ha)</th>
<th>Conduite intensive avec variétés pures</th>
<th>Conduite plus extensive avec variétés en mélange</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charges opérationnelles (F/ha) (engrais, semences, pesticides, fuel)</td>
<td>90</td>
<td>2312 F</td>
</tr>
<tr>
<td>- Fumure azotée (kg N/ha)</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>- rendement moyen atteint (q/ha)</td>
<td>92,4</td>
<td>90,9</td>
</tr>
<tr>
<td>- Coût au quintal des charges opérationnelles (F/q)</td>
<td>25,0</td>
<td>25,4</td>
</tr>
<tr>
<td>Marge brute par ha (F)</td>
<td>6928</td>
<td>6783</td>
</tr>
<tr>
<td>si prix blé = 100 F/q</td>
<td>4618</td>
<td>4509</td>
</tr>
<tr>
<td>si prix blé = 75 F/q</td>
<td>3509</td>
<td>3418</td>
</tr>
</tbody>
</table>

N.B. - Les 2 modes de conduite sont raisonnés, mais l’un vise un rendement plus élevé que l’autre.

<table>
<thead>
<tr>
<th>Mode de conduite</th>
<th>Rendement (q/ha)</th>
<th>intrants* (F/ha)</th>
<th>Marge (F/ha)</th>
<th>coût (sans les passages) (F/q)</th>
<th>nombre de passages en moyenne</th>
<th>Coût (avec passages **) (F/Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>intensif</td>
<td>100,2</td>
<td>4271</td>
<td>5749</td>
<td>35,8</td>
<td>17,0</td>
<td>42,6</td>
</tr>
<tr>
<td>conventionnel</td>
<td>93,3</td>
<td>3190</td>
<td>6141</td>
<td>28,3</td>
<td>13,7</td>
<td>34,2</td>
</tr>
<tr>
<td>raisonné</td>
<td>84,9</td>
<td>2231</td>
<td>6261</td>
<td>21,7</td>
<td>9,8</td>
<td>26,3</td>
</tr>
<tr>
<td>"extensif"</td>
<td>72,3</td>
<td>1244</td>
<td>5983</td>
<td>14,5</td>
<td>4,95</td>
<td>17,2</td>
</tr>
</tbody>
</table>

* : intrants = coûts = semences + engrais azoté + régulateurs de croissance + produits phytosanitaires.
** passages : interventions culturales avec le tracteur.

<table>
<thead>
<tr>
<th>Itinéraire et objectif de rendement</th>
<th>rendement obtenu (q/ha)</th>
<th>Nombre de parcelles d'essai</th>
<th>intrants (F/ha)</th>
<th>marge* (F/ha)</th>
<th>coût des intrants (F/q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensif (rendement élevé A)</td>
<td>66,2</td>
<td>58</td>
<td>1928</td>
<td>5072</td>
<td>29,1</td>
</tr>
<tr>
<td>Raisonné (A - 10 %)</td>
<td>62,6</td>
<td>58</td>
<td>1300</td>
<td>5385</td>
<td>20,8</td>
</tr>
<tr>
<td>"extensif" (A - 20 %)</td>
<td>60,3</td>
<td>24</td>
<td>1164</td>
<td>5339</td>
<td>19,3</td>
</tr>
</tbody>
</table>

* avec un prix du blé de 78 F/q et une prime compensatoire de 1800 F/ha

<table>
<thead>
<tr>
<th></th>
<th>1992 (*)</th>
<th></th>
<th>1993 (**)</th>
<th></th>
<th>1994 (**)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rendement (q/ha)</td>
<td></td>
<td>Rendement (q/ha)</td>
<td></td>
<td>Rendement (q/ha)</td>
</tr>
<tr>
<td>** Nb d' exploitations (1000) **</td>
<td><65</td>
<td>65-75</td>
<td>>75</td>
<td>Ensemble</td>
<td>65 à 75</td>
</tr>
<tr>
<td>Surface en blé/exploitation</td>
<td>181</td>
<td>68</td>
<td>53</td>
<td>123</td>
<td>31</td>
</tr>
<tr>
<td>Rendement (q/ha)</td>
<td>9,9</td>
<td>18,3</td>
<td>21,5</td>
<td>24,5</td>
<td>31,1</td>
</tr>
<tr>
<td>Charges variables par ha</td>
<td>2120</td>
<td>2908</td>
<td>2570</td>
<td>1917</td>
<td>2183</td>
</tr>
<tr>
<td>Marge brute (F/ha)</td>
<td>3701</td>
<td>4718</td>
<td>6389</td>
<td>4122</td>
<td>3966</td>
</tr>
<tr>
<td>Coûts variables (F/q)</td>
<td>39,7</td>
<td>41,6</td>
<td>51,3</td>
<td>27,9</td>
<td>31,1</td>
</tr>
<tr>
<td>Dont : engrais</td>
<td>16,9</td>
<td>18,4</td>
<td>11,9</td>
<td>9,8</td>
<td>12,2</td>
</tr>
<tr>
<td>Pesticides</td>
<td>16,4</td>
<td>15,0</td>
<td>13,9</td>
<td>14,2</td>
<td>14,7</td>
</tr>
<tr>
<td>Coûts fixes (F/q)</td>
<td>55,8</td>
<td>38,4</td>
<td>52,0</td>
<td>56,8</td>
<td>49,1</td>
</tr>
<tr>
<td>Coût total (F/q)</td>
<td>95,5</td>
<td>80,0</td>
<td>83,5</td>
<td>84,7</td>
<td>80,2</td>
</tr>
<tr>
<td>Prix du blé (F/q)</td>
<td>109</td>
<td>109,1</td>
<td>109,8</td>
<td>87,9</td>
<td>87,6</td>
</tr>
<tr>
<td>Résultat net (hors prime) (F/q)</td>
<td>13,5</td>
<td>29,1</td>
<td>26,3</td>
<td>3,2</td>
<td>7,4</td>
</tr>
</tbody>
</table>

* En 1992, les calculs portent sur l’ensemble des exploitations qui vendent du blé tendre.
** En 1993 et 1994, les calculs sont faits pour les exploitations relativement spécialisées : "grandes cultures" et "cultures & herbivores".

Quelques éléments de comparaison entre intensification et désintensification.

Comment expliquer cet écart de résultat entre l'intérêt relatif de l'intensification ou d'une désintensification plus ou moins prononcée ?

a) les notions d'intensification, de désintensification ou d'extensification renvoient tantôt à différents modes de conduite des cultures possibles dans un milieu donné, tantôt aux résultats obtenus en matière de rendement dans des milieux différents (parfois dans un milieu assez homogène, mais chez des agriculteurs différents). Or on ne peut pas assimiler un type de conduite culturale (plus ou moins intensif, associé à un certain niveau d'intrants par ha) à un résultat en termes de classes de rendement plus ou moins élevé. L'intensification en tant que mode de conduite à haut niveau d'intrants doit être distinguée de l'intensification-résultat associée à des rendements élevés.

Diverses enquêtes montrent que sur le strict plan statistique il n'y a pas de liaison entre niveau d'intrants/ha et niveau de rendement, autrement dit entre l'intensification-mode de conduite et l'intensification-résultat. Ainsi un même niveau d'intrants (par exemple 2500 F/ha pour les semences, engrais et pesticides) peut aller de pair avec des rendements variant du simple au double (55 à 110 q/ha) dans la même région ; à l'inverse un niveau donné de rendement (e.g. 90q/ha) peut être obtenu avec un niveau d'intrants variant du simple au triple entre diverses exploitations (Hébrard, Cury 1996). Dans une étude en Ile-de-France Carles et Millet (1995) ont comparé diverses exploitations en les répartissant en quatre classes à partir de deux critères : (a) le mode de culture du blé (selon que la dose d'azote à l'ha soit supérieure ou inférieure à 189 unités), (b) le niveau de rendement du blé (inférieur ou supérieur à 73 q). Les agriculteurs "économies" en azote obtiennent un rendement en blé identique (73,9 contre 72,3 q/ha) à celui obtenu par les "dépensiers" utilisant en moyenne 28 % de fertilisation azotée en plus : sur la base de ce critère le niveau des rendements obtenus parait peu lié au niveau d'intensification azotée (tableau 9). Toutefois ce dernier est évalué sur la base d'une observation a posteriori ; or une fertilisation azotée plus faible peut être liée à la présence de cultures économies dans l'assolement (voire à de l'élevage ou d'autres types d'apport) ; elle ne signifie donc pas nécessairement que l'intensification est moindre et le mode de conduite plus économique.

Notes et études économiques n° 8, septembre 1998.
Les hauts rendements observés sur le terrain dans les enquêtes correspondent souvent aux régions à haut potentiel et à l'inverse les bas rendements aux régions à faible potentiel. Il n’est donc pas étonnant qu’en moyenne en France les hauts rendements aillent de pair avec de bons résultats économiques (en termes de marges à l’ha et de coûts par q) et les bas rendements avec des résultats moins performants (cf. tableau 8) : dans ce cas ce que l’on compare, ce sont davantage des potentiels productifs que des modes de conduite plus ou moins intensifs toutes choses égales par ailleurs. Entre une zone à haut potentiel et une autre à bas potentiel, la diminution des charges est assez faible, par contre l’écart de rendement est élevé : cela explique que le coût de production par quintal soit plus bas dans les zones riches ; mais il est étrange d’en déduire que l’intensification dans l’absolu est davantage payante. Il s’agit en fait ici d’une intensification-résultat, c’est-à-dire de hauts rendements liés à de bons potentiels.

Par contre dans une région donnée, le montant des charges par ha varie relativement peu entre les groupes d’exploitants (ou de parcelles) à haut rendement et ceux situés dans la classe des rendements moindres. Dans les groupes d’exploitants déterminés par R. Carles sur un échantillon de 100 agriculteurs d’Ile-de-France, chez les « économies en azote » un niveau de charges quasi équivalent (2166 F/ha et 2182 F/ha) s’observe dans les deux classes de rendement (obtenant en moyenne respectivement 60 et 82 q/ha). De même chez les « dépensiers en azote » le niveau des charges est quasiment le même entre les groupes réalisant en moyenne respectivement 83,5 q/ha et 61,0 q/ha. Il semblerait donc y avoir des différences d’efficacité entre exploitations.

Tableau 9 - Variations des résultats technico-économiques d’exploitations de grande culture d’Ile de France selon leur intensification azotée et le rendement obtenu (Carles et Millet 1995)

<table>
<thead>
<tr>
<th>Niveau de fertilisation azotée (kg) par ha</th>
<th>Infrérieur à 189 kg</th>
<th>Supérieur à 189 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niveau de rendement du blé</td>
<td>Ensemble des</td>
<td></td>
</tr>
<tr>
<td><73 q/ha</td>
<td>explications</td>
<td></td>
</tr>
<tr>
<td>>73 q/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensemble des explications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>2182</td>
<td>2172</td>
<td></td>
</tr>
<tr>
<td>60,1</td>
<td>73,9</td>
<td></td>
</tr>
<tr>
<td>4625</td>
<td>6047</td>
<td></td>
</tr>
<tr>
<td>Exploitations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>2397</td>
<td>2368</td>
<td></td>
</tr>
<tr>
<td>61,0</td>
<td>83,5</td>
<td></td>
</tr>
<tr>
<td>4699</td>
<td>7030</td>
<td></td>
</tr>
<tr>
<td>5865</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De leur côté les résultats des essais expérimentaux correspondent en général à des conduites bien maîtrisées et bien ajustées dans de petites parcelles : l’itinéraire technique vise tel ou tel niveau de rendement et obtient le plus souvent des résultats très proches du rendement objectif ; ce sont donc des conduites efficaces, notamment parce que divers outils permettent un pilotage de la culture quasiment au jour le jour. Il conviendrait d’analyser plus en détail la cause des inefficacités apparentes que l’on rencontre sur le terrain dans les exploitations (par exemple l’obtention d’un même niveau de rendement avec des intrants dont le montant peut varier du simple au triple). Plusieurs facteurs explicatifs peuvent être avancés : (a) les hétérogénéités de milieu qui peuvent être notables ; (b) les variations agroclimatiques comme l’apport d’intrants est fait en visant souvent un rendement assez élevé qui ne pourra être atteint que les très bonnes années ; (c) le caractère plus ou moins optimal techniquement des dates et apports dans les interventions culturelles en liaison avec l’organisation du travail, l’éloignement des parcelles, la primauté d’autres activités : les agriculteurs ne font pas toujours les épandages ou traitements à la date optimale faute parfois de moyens pour la déterminer, ou bien de temps si plusieurs travaux sont en concurrence. En effet un exploitant ne vise pas l’optimum pour chaque parcelle : pour des raisons d’organisation du travail il peut regrouper pour les traiter ensemble certaines parcelles ou réaliser en priorité certaines travaux liés à des productions jugées plus importantes. Les contraintes d’organisation du travail sont également fortes quand l’équipement personnel en matériel est limité pour diminuer les charges fixes.

Notes et études économiques n° 8, septembre 1998
En définitive quand on parle de niveau d'intensification il convient de distinguer s'il s'agit d'un mode de conduite ou d'un rendement obtenu, les deux n'étant pas liés sur le terrain :

- En matière d'essais expérimentaux ce terme renvoie à différents modes de conduite avec pilotage et ajustement fin des intrants à l'objectif visé. Dans ce cas un rendement élevé est bien lié à une conduite intensive et un rendement plus bas à une conduite plus extensive. Dans de tels essais, si le prix du blé est assez bas, une conduite raisonnée avec une relative désintensification assure en général une meilleure marge à l'ha et un coût de production du blé plus bas que l'itinéraire visant le rendement maximal.

- Par contre sur le terrain la liaison entre rendement et niveau d'intrants ne s'observe guère, en raison des variations de potentiel ou de pratiques des agriculteurs : l'intensification-résultat (exprimée en termes de rendements à l'ha) n'est pas liée à l'intensification-mode de conduite se traduisant par un haut niveau d'intrants à l'ha : on ne peut pas assimiler rendements élevés et conduite intensive. Dans ce cas les groupes d'exploitants à hauts rendements ont une meilleure marge et un coût de production plus bas notamment car ils sont dans des zones à haut potentiel et/ou car ils ont une bonne maîtrise des interventions culturelles (le choix et les dates des apports lèvent les facteurs limitants).

Dans ce texte quand nous parlerons d'intensification, il s'agira du mode de conduite.

b) l'intérêt relatif d'un mode de conduite provient aussi de la plus ou moins grande variabilité des rendements selon les conditions climatiques. Le rendement maximum atteignable variant selon les conditions climatiques de l'année, l'agriculteur peut viser la médiane des rendements potentiels ou le quintile, voire le décile le plus élevé. Dans la périphérie sud et est du Bassin parisien où les rendements sont plus aléatoires car les sols plus superficiels ou séchants, dans les années 1980 les agriculteurs avaient souvent adopté le même itinéraire technique qu'en Beauce, ils avaient de ce fait comme objectif un rendement atteignable seulement une année sur dix. Depuis quelques années ils ont souvent revu cet objectif à la baisse et adapté la conduite en ce sens : les rendements sont moins variables, mais en moyenne leur progression est plus faible qu'au paravant, il y a donc eu désintensification.

La variabilité des rendements est-elle plus faible ou plus forte avec une conduite raisonnée, voire intégrée, ou bien une conduite intensive ? Si certaines expérimentations de l'ITCF (Robert 1995) ou de l'INRA (Meynard 1995) montrent une variabilité moindre quand l'objectif de rendement n'est pas trop élevé et la conduite raisonnée, dans la pratique chez les agriculteurs cela est loin d'être toujours le cas, au contraire. Une conduite raisonnée (et encore davantage pour une conduite intégrée) fournit des rendements plus réguliers uniquement si elle est bien maîtrisée ; sinon les rendements peuvent parfois chuter. Par exemple dans l'agriculture « standard » en épandant deux fongicides et demi dans le nord de la France, même avec un choix de produit ou de date non optimal, le résultat est à peu près sûr. Par contre dans une conduite raisonnée où un seul traitement est effectué, il doit être fait le bon jour, avec le bon produit, la bonne dose, voire à la bonne heure à cause des variations de conditions météorologiques. Une conduite raisonnée nécessite donc un niveau de connaissances et de disponibilités élevé : il faut savoir observer une plante dans le détail, diagnostiquer les attaques, comprendre les règles de décision pour les interventions, faire le traitement au bon moment. Le progrès technique des dernières années a été fait en préconisant un itinéraire technique standard en termes de dose d'azote, de variété, de date de semis, de traitements phytosanitaires à effectuer, etc. Si les apports et traitements sont beaucoup plus limités, il faut vraiment les réussir. De ce fait, alors que dans les essais expérimentaux la variabilité est moindre en culture raisonnée, sur le terrain la désintensification peut entraîner une plus grande variabilité et donc un accroissement du risque.

Notes et études économiques n° 8, septembre 1998
c) L'incertitude sur le climat de l'année a longtemps conduit à adopter une logique d'assurance.

« L'agriculteur ne sait pas d'avance quand il applique ses techniques quel sera le rendement permis par le climat, et par conséquent les besoins d'azote, de même qu'il ignore les risques de maladies (...). Aux prix de l'azote et du blé, l'agriculteur prévoit sa fertilisation non sur le rendement le plus probable mais sur le rendement permis par une bonne année climatique » (Meynard, Papy, 1993). Ainsi par exemple dans le contexte d'un blé à 120 F/q à la fin des années 1980, économiser 10 unités d'azote soit environ 38 F se justifiait-il sur le strict plan économique alors que si l'année était favorable l'agriculteur risquait de perdre 3 q, soit 360 F (1) ? Ceci explique que les conduites d'assurances, avec des doses larges, soient souvent préférées.

d) le type de conduite dépend du rapport de prix entre le blé et les intrants comme on vient de le voir. Le prix du blé a beaucoup baissé : en francs constants entre « 1960 » et « 1990 » il a été divisé par près de 2,5 ; entre "1950" et "1995" il a été divisé par plus de 3,5. Le prix des intrants a lui aussi décru mais à un rythme moindre (Pollet 1996 ; tableau 10). La baisse des prix du blé est due notamment à la croissance de la production permise par les gains de productivité, cela au niveau macro-économique. A l'échelle de l'agriculteur il s'agit de compenser la baisse des prix du blé par des gains de productivité, en particulier par une réduction de ses coûts de production.

Tableau 10 - Évolution comparée du prix du blé et de divers intrants depuis 30 ans. (1980 = 100)
(Source : APCA d'après INSEE)

|-----------------|----------|----------|------|------|------|----------------
| Blé | 164,7 | 66,8 | 44,0 | 43,7 | 41,8 | 2,47
| Engrais | 115,7 | 68,5 | 57,2 | 61,3 | 63,8 | 1,69
| Pesticides | 157,5 | 85,1 | 80,3 | 79,3 | 78,9 | 1,85
| Produits pétroliers | 70,9 | 83,2 | 76,9 | 74,9 | 81,3 | 0,85

NB : année « n » = moyenne des années n-1, n, n+1

On pensait souvent que la baisse des prix du blé consécutive à la réforme de la PAC de mai 1992 conduirait à une certaine désintensification. Mais trois facteurs ont contrecarré cette tendance : les primes compensatoires, bien qu'elles soient liées au rendement régional et national avant réforme et dont dégagées le rendement après la réforme, ont considérablement atténué les effets de la baisse du prix du blé, et l'ont en fait masquée ; la hausse des cours des céréales sur le marché mondial fin 1995 a conduit à un niveau des prix en 1995-1996 supérieur à celui qu'on attendait du fait de la réforme ; les firmes et négociants de l'agroalimentaire ont conseillé aux agriculteurs un maintien d'un niveau élevé d'intrants, ce qui a été favorisé par les bons résultats économiques de 1995-1996. De ce fait une certaine reprise de l'intensification s'est observée fin 1995 et en 1996 et 1997 alors que les années précédentes l'incertitude et l'inquiétude liées à la réforme de la PAC avaient beaucoup restreint les achats ; en 1995 et 1996 les agriculteurs ont profité de leurs meilleures rentées financières pour faire les acquisitions reportées, anticipant aussi peut-être que de telles conditions favorables étaient exceptionnelles. Pour l'avenir l'évolution du cours du blé sur le marché mondial reste incertaine : la demande est croissante, mais pas toujours solvable...

1 On suppose ici que 3 kg d'azote environ sont nécessaires pour 1 q de blé. En fait ceci est le cas en valeur moyenne, la quantité d'azote nécessaire à la marge pouvant être plus faible.
e) Une conduite raisonnée demande plus de temps d’observation.

On peut noter une évolution vers un meilleur raisonnement des intrants, un ajustement plus fin des apports et des traitements en fonction des besoins au lieu d’applications standards. Cette conduite permet une meilleure efficacité et limite les gaspillages, les apports excédentaires entraînant de surcroît des pollutions. Mais comme on l’a vu, cela augmente le risque. Par ailleurs une conduite réellement raisonnée peut nécessiter un temps d’observation important et un niveau de connaissances techniques élevé. En effet, itinéraire raisonné ne signifie en rien itinéraire très extensif où l’agriculteur n’aurait qu’à semer et à faire deux ou trois passages au lieu d’une douzaine, en laissant faire la nature ! Bien au contraire une conduite raisonnée est encore intégrée requiert beaucoup d’attentions dans la mesure où chaque intervention est reflétée au lieu d’être effectuée systématiquement en fonction d’un calendrier prédéterminé. Il faut donc examiner quasiment chaque parcelle, effectuer des observations, parfois des prélèvements, des tests, pour évaluer si un traitement est nécessaire, quand, et à quelle dose. Ainsi par exemple un raisonnement de la fertilisation azotée par la méthode des bilans nécessite pour être vraiment fin de faire un dosage des reliquats azotés dans le sol, ce qui demande un certain temps pour les prélèvements. Le dosage des nitrates dans le jus de base de tige du blé avec un test comme Jubil (mis au point par l’INRA et l’ITCF) ou Ramisés (proposé par l’UNCAA) demande de faire des relevés tôt le matin et à plusieurs reprises. Les observations au champ pour détecter des symptômes précurseurs de maladies, même en utilisant des kits de diagnostic, peuvent être assez longues.

En culture standard il faut 7 à 8 heures de temps de traction pour un hectare de blé ; avec de grandes parcelles, un matériel adéquat et certaines techniques comme le semis direct, cela peut être réduit à 4 h/ha, voire 2 h/ha. Ainsi un homme seul peut s’occuper de 400 ha au maximum ; on considère en effet qu’un agriculteur peut difficilement travailler plus de 1 000 heures sur le tracteur compte tenu des autres tâches à faire.

Mais en système intégré le temps d’observation peut avoisiner le temps de traction et atteindre environ 4 heures par ha. De ce fait la rentabilité micro-économique à court terme n’est pas évidente : un traitement contre les pucerons coûte par exemple 80 F environ ; si l’agriculteur doit faire des observations durant 2-3 heures tous les jours pendant une quinzaine de jours pour compléter les pucerons tombés dans des pièges et évaluer si le seuil est atteint pour traiter, cela n’est pas rentable sur le plan micro-économique même si cela est avantagé au niveau environnemental. Par contre pour des traitements fongicides coûteux, le temps d’observation est mieux valorisé. Il faut également noter que des économies d’échelle sont possibles en matière d’observation, ainsi qu’un certain gain de temps avec l’expérience.

A ces difficultés de raisonnement des intrants diverses solutions existent : l’automatisation par capteurs de certaines observations, l’emploi de modèles de croissance des plantes permettant de décrire et suivre leur développement en fonction des conditions agroclimatiques et d’indiquer aux agriculteurs date, dose et type d’interventions nécessaires (en diffusant ces conseils par des techniciens) ; enfin le versement de primes si l’on respecte de bonnes pratiques culturales. L’automatisation par capteurs connaît un développement rapide avec l’intérêt porté à l’agriculture de précision où s’investissent actuellement de nombreuses firmes et organismes. Par ailleurs des agriculteurs sensibilisés à l’environnement et recherchant des conduites culturales « plus économies et plus autonomes » peuvent apprécier l’observation des cultures (le "tour de plaine") alors que d’autres jugeront cela au contraire comme peu valorisant ou dépassé.

Ainsi donc dans un système raisonné ou intégré de dimension moyenne il est possible de cumuler le temps d’observation aux autres travaux. Pour les exploitations plus vastes l’emploi de capteurs embarqués sur le tracteur ou le conseil à partir de modèles de développement des plantes permettrait de réduire le temps d’observation directe. De ce fait une conduite des cultures plus raisonnée devrait pourvoir être une tendance envisageable pour l’avenir si elle s’avère économiquement rentable. Et cela d’autant plus que des recherches et expérimentations seront effectuées en ce domaine, ce qui permettra d’améliorer les connaissances en la matière et de gagner du temps grâce à l’apprentissage, l’instrumentation, la modélisation.

Notes et études économiques n° 8, septembre 1998
f) la comparaison de divers niveaux d'intensification doit se faire non sur une culture, mais sur le système de production dans son ensemble.

Les exemples donnés précédemment portaient sur le blé considéré isolément du reste de l'exploitation. Or toute comparaison en matière de niveau d'intensification doit prendre en compte l'ensemble du système de production. En particulier c'est le revenu global par travailleur, ou du moins la marge brute globale par travailleur qui compte pour l'agriculteur, non la marge brute à l'hectare en elle-même. Même dans l'agriculture "standard" assez intensive et artificielle, les interactions entre productions jouent au niveau agronomique et économique : par exemple les rotations continuent à avoir un rôle agronomique et le temps consacré à une culture en période de pointe de travail peut concourir à celui alloué à une autre et affecter ses résultats. Or l'obtention d'un très haut rendement requiert d'effectuer les interventions culturelles au moment propice. En outre la diversification des productions peut jouer un rôle croissant dans certains exploitations, par exemple si on cherche à diversifier les sources de revenus. Aussi est-ce l'ensemble du système qui doit être pris en considération pour évaluer sa viabilité.

En conclusion devrait-on observer dans les prochaines années une intensification ou une désintensification de la conduite du blé, ce qui peut influer sur les rendements ? Les conduites seront sans doute diversifiées selon les régions et les exploitations. Dans les régions à haut potentiel et les exploitations dites « professionnelles », l'itinéraire technique restera sans doute intensif, mais cependant plus raisonné, plus ajusté que naguère aux objectifs de rendement qu'il est probable d'obtenir ; toutefois l'évolution en ce domaine dépend aussi des exploitations et en particulier des évolutions structurelles, notamment de la surface par travailleur. Dans les régions à potentiel moins élevé, on ne visera plus systématiquement un haut rendement atteignable seulement une année sur dix, on adaptera davantage la conduite aux potentialités locales ce qui conduit à une certaine désintensification qui s'est déjà observée dans la périphérie sud et est du Bassin parisien. Par ailleurs on observera sans doute demain encore plus qu'aujourd'hui une diversification des formes d'agriculture (cf par exemple Bonny 1997), avec par exemple l'existence simultanée d'exploitations intensives, d'autres plus extensives, quelques-unes biologiques, d'autres intégrées, avec également une grande variété de dimensions : n'oublions pas qu'à côté de l'agriculture à temps complet existe en France une forte proportion (près de 40%) d'exploitations à temps partiel où les conduites peuvent être plus extensives. On devrait donc sans doute observer demain des modes de conduite des cultures très variés selon le type d'exploitations et de régions : intensif, extensif, raisonné (de façon plus ou moins forte), intégré, biologique, etc. Certes une part importante de la production proviendra des régions à haut potentiel conduites probablement de façon assez intensive, mais en termes d'occupation du territoire ou de créneaux de marché spécifiques (y compris à l'exportation), les autres modes de conduite auront aussi leur importance.
Chapitre VI - LES PERSPECTIVES D’ÉVOLUTION DES RENDEMENTS DANS LES PROCHAINES ANNÉES : DIVERSES ESTIMATIONS.

En fonction des différents facteurs influençant l’évolution des rendements que nous avons passés en revue, quelle peut être leur tendance dans les prochaines années ? Parmi les éléments déterminants intervienient particulièrement le progrès technique envisageable, l’évolution des prix du blé (liée entre autres à la demande mondiale solvable) ainsi que celle des intrants utilisés, les aspects réglementaires et de politique économique. Mais un autre aspect essentiel est aussi l’orientation choisie par les acteurs concernés. Or diverses options sont souvent opposées, en particulier une agriculture très productive, compétitive, exportant sur les marchés mondiaux, source d’apport en devises et du maintien d’une agriculture puissante, ou bien une agriculture respectueuse de l’environnement, entretenant le territoire, visant notamment la qualité. En fait contrairement aux apparences, les deux orientations ne sont pas nécessairement antagonistes en ce sens que l’agriculture peut être plutôt productiviste en certaines régions à haut potentiel et moins intensive en d’autres régions où elle viserait d’autres fonctions que la production de produits agricoles de masse à bas prix (Bonny 1997) ; par ailleurs sur divers marchés les critères de qualité (au sens large) sont un élément important de compétitivité à l’exportation, ou au contraire de barrières à l’importation de la part de certains pays.

Comme le disait un acteur de la filière en matière de perspectives d’évolution des rendements « on aura les rendements que l’on souhaite avoir ». Or les objectifs en ce domaine sont relativement variés. Dans la filière agricole elle-même on vise souvent une agriculture à hauts rendements fortement productive et exportatrice en mettant en avant les perspectives de croissance du marché mondial, les potentialités de la France, les emplois indirects induits, l’apport de devises, etc. Mais un certain nombre d’exploitants aspirent de leur côté à une agriculture plus économique et autonome, plus paysanne, ayant souvent des rendements plus modérés, en relation avec la demande croissante de certains groupes de consommateurs en la matière. La filière d’amont ou d’aval incite au contraire souvent à un fort niveau de production et d’emploi d’intrants dont dépend son chiffre d’affaires. C’est notamment le cas des coopératives et négociants collectant les produits agricoles, ainsi que des vendeurs d’intrants, du moins à la base, qui mettent souvent en avant auprès des agriculteurs les risques encourus s’ils réduisent quelque peu les doses. Toutefois certaines firmes ou groupements se sont adaptées et proposent actuellement davantage de services (par exemple des conseils en matière de bon usage de leurs produits) plutôt que seulement des intrants dont ils chercheraient essentiellement à accroître le volume vendu. Un certain nombre de leurs dirigeants ont en effet bien perçu l’enjeu d’une agriculture davantage raisonnée, d’autant plus que si un pesticide est trop largement utilisé, les ravageurs développent des résistances et le pesticide peut perdre assez rapidement son intérêt et ne plus être employé, ce qui diminue la rentabilité des investissements pour l’obtenir (1). En outre les firmes cherchent à améliorer leur image de marque (Bonny 1994) ; il est ainsi notable que pour cette dernière raison, mais aussi pour faire entendre leur point de vue, les syndicats des firmes de l’agrochimie sont impliqués dans les opérations et les comités visant à réduire les pollutions par les nitrates et les pesticides comme le CORPEN, Ferti-Mieux, Phyto-Mieux, FARRE, etc. et insistent sur l’intérêt d’une conduite raisonnée.

Au niveau de la politique agricole française et communautaire les points de vue sont également variés. En particulier tous les pays de l’U.E. ne paraissent pas souhaiter le même type d’agriculture, la volonté exportatrice et “productiviste” étant par exemple fort variable selon les pays. Aussi est-il difficile d’anticiper les options qui seront choisies : développement du potentiel productif avec recherche de compétitivité-prix, ou orientation plus axée vers une agriculture visant la qualité, l’entretien du territoire, ou double option en fonction des régions, etc.

1 Rappelons que le coût moyen de développement d’un produit phytosanitaire est passé selon l’Union des Industries de la Protection des Plantes de 200 millions de F en 1980 à 450 en 1990 et 900 millions de F en 1995. Or jusqu’en 1996 un produit phytosanitaire était protégé par un brevet pendant 20 ans, mais comme 10 ans s’écoulent entre le dépôt du brevet et la commercialisation effective du produit, il devait être rentabilisé en 10 ans car ensuite la molécule tombe dans le domaine public et peut être copiée ; toutefois une protection supplémentaire (5 ans) de la propriété industrielle est accordée depuis fin 1996 dans l’U.E.
Quelques estimations de divers organismes ou chercheurs.

Dans la recherche publique et les instituts techniques les points de vue sur l’évolution envisageable sont variés. Certains agronomes pensent que le trend d’évolution devrait plutôt s’inféchir dans les prochaines années. Ainsi J.M. Meynard, chercheur en agronomie à l’INRA, estime que même si le blé restait à un prix élevé, aujourd’hui ou dans 5 ans on verrait un inféchissement : d’une part les meilleurs rendements plafonneraient, d’autre part les facteurs limitants empêchant d’atteindre un très haut rendement sont difficiles à contourner, particulièrement si la surface cultivée par travailleur s’accroît (cf. supra). G. Doussinault, un des spécialistes de l’amélioration génétique du blé à l’INRA, pense également que, même en l’absence de freins économiques à l’intensification, le trend d’évolution des rendements s’inféchirait assez rapidement : peut-être progressera-t-on encore pendant 10 ans jusqu’à un rendement moyen de 75 q/ha, mais ensuite le taux de croissance sera plus faible, l’inféchissement étant dû là aussi à la difficulté à contourner les contraintes et les facteurs limitants. Si en outre les rapports de prix ou les mesures réglementaires incitaient à limiter l’emploi des intrants, le trend de croissance diminuerait plus rapidement, cette orientation vers une atténuation de la pente de progression étant peut-être déjà amorcée depuis quelques années. Mais à plus long terme une certaine reprise est envisageable.

Dans d’autres organismes comme l’ITCF on estime en général que les rendements devraient croître encore dans les prochaines années. D’une part un nouveau type de fongicide contre la septoriose et la fusariose à base de strobilurine commercialisé en 1997 peut rendre possible une lutte plus efficace. Et surtout l’emploi de modèles écophysiologiques devrait permettre de suivre finement au jour le jour l’évolution des cultures, de déterminer de façon très précise les interventions à faire ; les conseils en ce domaine pourraient être diffusés aux agriculteurs par des techniciens des organismes de développement. Les progrès en matière de pilotage des cultures et d’ajustement fin des apports aux besoins en termes de doses à épandre, de choix des produits et de dates optimales d’intervention devraient entraîner une progression des rendements dans les zones à fort potentiel car cela permet de pallier (au moins en partie) les contraintes agroclimatiques, les maladies ou d’autres facteurs limitants. Avec ce suivi fin, les risques de carence azotée ou de traitements inadéquats sont réduits. De plus les techniciens et les firmes souhaitent qu’une agriculture bien raisonnée puisse être prospère : en utilisant le bon produit à la bonne dose, à la bonne date et à l’endroit exact, on peut diminuer le risque de lessivage ou de pollution. L’accent mis sur cet aspect pourrait apporter au moins partiellement une réponse aux pressions sociétales en faveur de l’environnement qui ne seraient plus alors un obstacle à la progression des rendements, et cela d’autant plus que l’opinion publique, du moins une fraction notable, pourrait être relativement moins se préoccuper de la pollution agricole dans l’avenir, par exemple si d’autres problèmes prenaient le devant de la scène.
Tableau 11 - Taux de croissance annuelle moyen des rendements du blé en France durant ces dernières années et projections 1995-2000

a) Tendances passées (calculs effectués par l'auteur à partir des données du SCEES)

<table>
<thead>
<tr>
<th>Période</th>
<th>Nombre d'années</th>
<th>Taux de croissance annuel moyen (TCAM) (% par an)(*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961-1996</td>
<td>35</td>
<td>2,8</td>
</tr>
<tr>
<td>1978-1996</td>
<td>18</td>
<td>2,1</td>
</tr>
<tr>
<td>1983-1996</td>
<td>12</td>
<td>1,7</td>
</tr>
<tr>
<td>1988-1996</td>
<td>7</td>
<td>1,1</td>
</tr>
<tr>
<td>1991-1996</td>
<td>5</td>
<td>0,95</td>
</tr>
</tbody>
</table>

b) Projections selon divers organismes.

<table>
<thead>
<tr>
<th>Organismes</th>
<th>Projections de 1996 à 2001 ou davantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>• OCDE (Perspectives agricoles 1995-2000, pages 27 et 32)</td>
<td>Ralentissement de la croissance</td>
</tr>
<tr>
<td>• Modèle MONIC (Modèle d'Offre Nationale et Internationale de Céréales de l'ONIC (ONIC 1997)</td>
<td>Reprise de la croissance des rendements : (en q/ha)</td>
</tr>
<tr>
<td>• Modèle MAGALI pour 1996-2001 (Mathieu, Ramanantsoa 1997) (cf. figure 8)</td>
<td></td>
</tr>
<tr>
<td>• Projet ECAM (LEI-DLO, CPB, SOW-VU, Pays-Bas) : the Common Agricultural Policy beyond the MacSharry Reform (Folmer et al. 1995, pp. 158, 292-295, 306-307)</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>71</td>
</tr>
</tbody>
</table>

Soit un taux de croissance annuelle moyen (TCAM) de 2,4 %

Reprise de la croissance des rendements : 1,7 % de TCAM (pour les céréales dans leur ensemble) après l'inféchissement observé de 1991 à 1995 (1,3 %), mais à un rythme un peu ralenti comparativement à la période 1986-1991 (2,7 % par an)

Pour le blé (blé dur inclus) dans l'UE à 9, rendement moyen :
47,8 q/ha en 1982
87,5 q/ha en 2020

(TCAM: 1,6 %/an)

(*) Le calcul effectué en taux de croissance tendanciel moyen (exprimé en % par an) suppose une croissance de type exponentiel \(R_n = R_0 (1+i)^n \) (i étant le taux de croissance), autrement dit que chaque année le rendement moyen est multiplié par \((1+i)\) ce qui correspond à une progression géométrique : le rendement varierait proportionnellement à lui-même. Dans la réalité la croissance des rendements est plutôt arithmétique que géométrique. Un ajustement par la méthode des moindres carrés où la droite de tendance se détermine par régression par rapport au temps parait de meilleure qualité (cf. figure 9) ; toutefois pour une croissance modérée l'assimilation à une croissance exponentielle peut être acceptable.
Figure 8 - Évolution des rendements (q/ha) de 1970 à 1996, et projection 1996-2001 d’après le modèle MAGALI (Mathieu, Ramanantsoa, 1997)

En définitive les points de vue sont variés entre certains qui voient plutôt un plafonnement, du moins une inflexion de la progression des rendements, et d'autres qui pensent qu'en régions à haut potentiel une croissance des rendements est encore tout à fait possible : dans la mesure où certains agriculteurs obtiennent déjà 120 q/ha, leurs voisins ayant le même potentiel productif mais des résultats plus bas pourront également parvenir à ces rendements ou s'en rapprocher. Et à long terme des avancées technologiques permettraient de dépasser le potentiel maximum de 140-150 q/ha. Mais l’évolution des rendements est liée aux objectifs des divers acteurs impliqués.

Mode de conduite des cultures envisagé par les agriculteurs pour les prochaines années.

Le SCEES a réalisé en 1994 une enquête dite « pratiques culturales » portant sur la conduite agronomique des principales grandes cultures. Les agriculteurs ont indiqué de façon très détaillée l’itinéraire technique suivi pour la culture d’une parcelle tirée au sort dans l’exploitation. L’investigation a abordé également en fin de questionnaire la stratégie de l’agriculteur pour la conduite de la culture observée (stratégie générale sur l’exploitation, et non sur la seule parcelle enquêtée). Près de 9000 questionnaires ont été ainsi recueillis pour 8 cultures dans 17 régions françaises.

La question de conclusion était libellée de la sorte :

« à l’avenir vous pensez cultiver cette culture (blé, orge, maïs, colza, tournesol ou pois) »:

- en visant un rendement maximal parce que c’est pour vous la solution qui dégagera le plus de profit (recherche du rendement maximal) ;

- en visant un rendement élevé mais en raisonnant les techniques pour limiter les coûts (rendement élevé mais conduite raisonnée) ;

- en diminuant au maximum toutes les dépenses, quitte à diminuer le rendement (baisse maximale des charges).

(N.B. - L’abréviation du choix proposé est celle que nous avons retenue pour présenter les résultats ci-après, mais ne figurait pas dans le questionnaire lui-même).
Seuls 10 % des agriculteurs recherchent le rendement maximal – davantage cependant pour le blé dur et le maïs –, car ils optent pour 81 % d'entre eux pour un rendement élevé avec une conduite raisonnée. Et 8 % environ visent à diminuer au maximum toutes les dépenses, quitte à voir le rendement baisser (tabl. 12).

Tableau 12 - Mode de conduite envisagé pour l'avenir selon la culture considérée
(en % du nombre des exploitations, 8967 exploitations enquêtées)
(Source : enquête Pratiques culturales 1994, SCEECS).

<table>
<thead>
<tr>
<th>Culture</th>
<th>Recherche du rendement maximal</th>
<th>Rendement élevé mais conduite raisonnée</th>
<th>Baisse maximale des charges</th>
<th>Sans object</th>
<th>Nombre d'exploitations enquêtées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blé tendre</td>
<td>8,8</td>
<td>83,0</td>
<td>7,4</td>
<td>0,8</td>
<td>1945</td>
</tr>
<tr>
<td>Blé dur</td>
<td>17,2</td>
<td>71,9</td>
<td>7,2</td>
<td>3,6</td>
<td>609</td>
</tr>
<tr>
<td>Orge</td>
<td>7,2</td>
<td>81,1</td>
<td>9,9</td>
<td>1,8</td>
<td>1435</td>
</tr>
<tr>
<td>Maïs</td>
<td>13,0</td>
<td>80,6</td>
<td>6,0</td>
<td>0,4</td>
<td>1844</td>
</tr>
<tr>
<td>Colza</td>
<td>8,4</td>
<td>82,3</td>
<td>7,8</td>
<td>1,5</td>
<td>1025</td>
</tr>
<tr>
<td>Tournesol</td>
<td>9,2</td>
<td>80,4</td>
<td>9,4</td>
<td>1,0</td>
<td>1323</td>
</tr>
<tr>
<td>Puis protéagineux</td>
<td>8,9</td>
<td>84,9</td>
<td>5,3</td>
<td>0,9</td>
<td>786</td>
</tr>
<tr>
<td>Ensemble</td>
<td>10,0</td>
<td>81,2</td>
<td>7,7</td>
<td>1,2</td>
<td>8967</td>
</tr>
</tbody>
</table>

En ce qui concerne le blé nous avons cherché à observer les variations de stratégies selon le niveau de rendement dans la parcelle enquêtée de l’exploitation et selon les régions (tabl. 13). Les rendements obtenus par les agriculteurs sont conformes aux différentes stratégies envisagées : ceux qui ont un haut rendement visent plus fréquemment un rendement élevé raisonné ou le maximum, au contraire les exploitants obtenant moins de 61 q/ha cherchent plus souvent à comprimer le plus possible leurs dépenses (liaison significative). Les modes de conduite envisagés pour le blé varient également selon la région, mais de façon moins significative. L’objectif recherché paraît donc lié au rendement obtenu sur l’exploitation, mais peu à la productivité régionale moyenne.

**Tableau 13 - Mode de conduite du blé envisagé pour l’avenir selon le rendement obtenu sur la parcelle enquêtée (*) et selon la région (en % des exploitations - échantillon de 1 945 exploitations sur la France entière)
Source : enquête Pratiques culturales 1994, SCEECS, (Agreste 1996).**

<table>
<thead>
<tr>
<th>Rendement obtenu sur la parcelle enquêtée : classes</th>
<th>Rendement moyen**</th>
<th>Recherche du rendement maximal</th>
<th>Rendement élevé mais conduite raisonnée</th>
<th>Baisse maximale des charges</th>
<th>Sans object (arrêt de la culture)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1er quartile (moins de 61 q/ha)</td>
<td>76.7</td>
<td>8,5</td>
<td>78,7</td>
<td>11,2</td>
<td>1,6</td>
</tr>
<tr>
<td>2e quartile (61 à 70 q/ha)</td>
<td>72.3</td>
<td>8,3</td>
<td>84,2</td>
<td>7,2</td>
<td>0,4</td>
</tr>
<tr>
<td>3e quartile (71 à 78 q/ha)</td>
<td>78.9</td>
<td>8,8</td>
<td>85,1</td>
<td>5,6</td>
<td>0,5</td>
</tr>
<tr>
<td>4e quartile (plus de 78 q/ha)</td>
<td>68.6</td>
<td>10,0</td>
<td>86,0</td>
<td>3,4</td>
<td>0,5</td>
</tr>
<tr>
<td>Région</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile-de-France</td>
<td>76.7</td>
<td>15,5</td>
<td>78,4</td>
<td>6,0</td>
<td></td>
</tr>
<tr>
<td>Champagne-Ard.</td>
<td>72.3</td>
<td>7,4</td>
<td>80,6</td>
<td>11,4</td>
<td>0,6</td>
</tr>
<tr>
<td>Picardie</td>
<td>78.9</td>
<td>5,5</td>
<td>92,3</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>Centre</td>
<td>68.6</td>
<td>7,0</td>
<td>86,1</td>
<td>5,7</td>
<td>1,3</td>
</tr>
<tr>
<td>Normandie</td>
<td>72.3</td>
<td>7,5</td>
<td>82,0</td>
<td>10,6</td>
<td></td>
</tr>
<tr>
<td>Bourgogne</td>
<td>63.7</td>
<td>6,2</td>
<td>87,0</td>
<td>6,2</td>
<td>0,7</td>
</tr>
<tr>
<td>Nord-Pas-de-Calais</td>
<td>85.5</td>
<td>9,9</td>
<td>82,4</td>
<td>7,7</td>
<td></td>
</tr>
<tr>
<td>Lorraine</td>
<td>65.0</td>
<td>7,1</td>
<td>83,8</td>
<td>8,1</td>
<td>1,0</td>
</tr>
<tr>
<td>Pays de Loire</td>
<td>66.2</td>
<td>12,7</td>
<td>77,7</td>
<td>7,8</td>
<td>1,8</td>
</tr>
<tr>
<td>Bretagne</td>
<td>66.8</td>
<td>11,0</td>
<td>79,0</td>
<td>8,7</td>
<td>1,4</td>
</tr>
<tr>
<td>Poitou-Charentes</td>
<td>65,0</td>
<td>9,3</td>
<td>87,3</td>
<td>2,7</td>
<td>0,7</td>
</tr>
<tr>
<td>Midi-Pyrénées</td>
<td>51.9</td>
<td>7,1</td>
<td>82,0</td>
<td>9,3</td>
<td>1,6</td>
</tr>
<tr>
<td>Auvergne</td>
<td>63,0</td>
<td>8,5</td>
<td>85,6</td>
<td>5,9</td>
<td></td>
</tr>
<tr>
<td>Ensemble</td>
<td>8,8</td>
<td>83,0</td>
<td>7,4</td>
<td>0,8</td>
<td>1,0</td>
</tr>
</tbody>
</table>

(*) La parcelle dont la conduite culturelle a fait l’objet de l’enquête a été tirée au sort parmi les parcelles de l’exploitation, par contre le mode de conduite envisagé concerne le blé sur l’ensemble de l’exploitation.

(**) Rendement moyen (q/ha) obtenu par les exploitations enquêtées de la région.

Notes et études économiques n° 8, septembre 1998
Toutefois si la conduite raisonnée est plébiscitée, cela ne signifie pas nécessairement qu’elle soit toujours réellement mise en pratique en ce sens où ce deuxième choix offre permettant à la fois un rendement élevé et une limitation des coûts est en quelque sorte l’idéal. Les choix proposés dans l’enquête en matière d’itinéraires techniques auraient peut-être pu être plus variés et offrir davantage de nuances. Cependant les réponses sont notables : désormais seulement un agriculteur sur dix vise le rendement maximal. Pour en déduire des indications en matière d’évolution des rendements dans les prochaines années comparativement au passé, il faudrait disposer de résultats à une question identique posée il y a plusieurs années pour noter si on observe des modifications, mais cette comparaison n’est pas possible car dans les précédentes enquêtes de ce type (dites « terres labourables ») il n’existait pas de question similaire.

Extrapolations des tendances passées de croissance des rendements

On s’interroge ici sur ce que donnerait dans l’avenir par extrapolation la continuation des tendances passées de croissance des rendements : il s’agit d’une hypothèse de référence (scénario tendanciel). Leur progression depuis les lendemains de la deuxième guerre mondiale a été très rapide :

- pour la France entière de 1961 à 1996, elle a été de 1,29 q/ha.an
- en Champagne de 1966 à 1996, elle a été de 1,60 q/ha.an
- en Picardie de 1966 à 1996, elle a été de 1,50 q/ha.an.

ces deux dernières régions ayant aujourd’hui parmi les plus hauts rendements de l’hexagone.

Tableau 14 - Tendances de progression des rendements du blé en France durant les dernières décennies (établies par régression linéaire).

<table>
<thead>
<tr>
<th>Période</th>
<th>Nombre d’années</th>
<th>Trend du gain de rendement en q par ha et par an</th>
<th>Number of years</th>
<th>Trend</th>
<th>gain of</th>
<th>Trend</th>
<th>Renderment</th>
<th>Trend</th>
<th>Renderment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961-96</td>
<td>36 ou 31</td>
<td>1,29 (0,06)</td>
<td>1983-96</td>
<td>14</td>
<td>0,32</td>
<td>0,81</td>
<td>1,60</td>
<td>0,11</td>
<td>0,87</td>
</tr>
<tr>
<td>1978-96</td>
<td>19</td>
<td>1,24 (0,145)</td>
<td>1983-96</td>
<td>14</td>
<td>0,25</td>
<td>0,61</td>
<td>1,24</td>
<td>0,23</td>
<td>0,62</td>
</tr>
<tr>
<td>1983-96</td>
<td>14</td>
<td>1,08 (0,25)</td>
<td>1983-96</td>
<td>19</td>
<td>0,47</td>
<td>0,12</td>
<td>0,92</td>
<td>0,40</td>
<td>0,30</td>
</tr>
<tr>
<td>1988-96</td>
<td>9</td>
<td>0,73 (0,26)</td>
<td>1983-96</td>
<td>19</td>
<td>0,12</td>
<td>0,54</td>
<td>0,66</td>
<td>0,40</td>
<td>0,16</td>
</tr>
</tbody>
</table>

Quelle évolution envisager pour l’avenir ? Différents scénarios peuvent être étudiés selon l’évolution des facteurs influant sur le rendement, et peuvent être comparés au scénario de référence établi par continuation du trend passé. On notera que l’hypothèse de croissance exponentielle paraît donner des résultats moins plausibles sur longue période qu’un ajustement linéaire (fig. 9). La figure 10 donne une projection des rendements du blé d’ici à 2005 par ajustement linéaire, en suivant le trend des dernières décennies établi sur diverses périodes.
Pour l'an 2000, selon la période passée de référence, et avec une croissance linéaire

le rendement moyen projeté en France varie de 72,6 q/ha à 76,6 q/ha
le rendement moyen projeté en Champagne varie de 73,1 q/ha à 92,3 q/ha
le rendement moyen projeté en Picardie varie de 76,5 q/ha à 90,0 q/ha.

Tabl. 15 - Tendance d'évolution des rendements du blé en France durant les dernières années et décennies et extrapolations envisageables pour l'an 2000 (calculs effectués par l'auteur à partir des données du SCEES).

<table>
<thead>
<tr>
<th>Période de calcul de l'ajustement</th>
<th>Trend (q/ha.an)</th>
<th>R²</th>
<th>Rendement tendanciel projeté (q/ha)</th>
<th>Taux de croissance annuelle moyenne (%)</th>
<th>Rendement projeté (q/ha) en 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961-1996</td>
<td>1,29</td>
<td>0,94</td>
<td>76,6 83,1</td>
<td>2,8 0,92</td>
<td>82,8</td>
</tr>
<tr>
<td>1961-1978</td>
<td>1,21</td>
<td>0,76</td>
<td>74,1 80,2</td>
<td>3,4 0,77</td>
<td>98,6</td>
</tr>
<tr>
<td>1978-1996</td>
<td>1,24</td>
<td>0,81</td>
<td>76,2 82,4</td>
<td>2,1 0,81</td>
<td>76,7</td>
</tr>
<tr>
<td>1961-1983</td>
<td>1,19</td>
<td>0,86</td>
<td>73,4 79,4</td>
<td>3,15 0,86</td>
<td>90,4</td>
</tr>
<tr>
<td>1983-1996</td>
<td>1,08</td>
<td>0,61</td>
<td>74,8 80,2</td>
<td>1,75 0,59</td>
<td>72,0</td>
</tr>
<tr>
<td>1961-1988</td>
<td>1,28</td>
<td>0,89</td>
<td>76,3 82,7</td>
<td>3,1 0,88</td>
<td>89,0</td>
</tr>
<tr>
<td>1988-1996</td>
<td>0,73</td>
<td>0,54</td>
<td>72,6 76,3</td>
<td>1,1 0,55</td>
<td>72,0</td>
</tr>
</tbody>
</table>

Fig. 10. - Évolution des rendements du blé en France et projections tendancielles pour 2005 par extrapolation selon plusieurs périodes de référence pour le trend passé

Notes et études économiques n° 8, septembre 1998
Aspects économiques, commerciaux, sociétaux et réglementaires pouvant influer sur l'évolution des rendements.

On s'interroge ici brièvement sur les perspectives de divers facteurs susceptibles d'influencer sur l'évolution des rendements du blé. On abordera notamment le prix du blé, l'évolution envisagée de la demande mondiale en céréales, la politique agricole commune et l'impact des réglementations environnementales en France.

Le prix du blé

Le niveau des rendements dépend fortement des incitations, notamment économiques, à produire, à intensifier ou désintensifier. Il est ainsi fort sensible au prix du blé, et au rapport entre son prix et celui des intrants utilisés. Dans le modèle MAGALI (1) le rendement des cultures est spécifié par une fonction dépendant d'un trend de progrès technique exogène, de variables climatiques et du rapport entre le prix des produits agricoles et celui des intrants (Ramanantsoa, 1995). Les résultats sur la période 1973-1993 font apparaître une assez forte sensibilité au prix du produit (tableau 16); ainsi une hausse de 10 % du prix du blé entraîne une progression de 2,3 % du rendement, et une augmentation de 10 % du prix des céréales induit une hausse de 3,9 % des quantités livrées. Mais il est préférable de distinguer trois périodes : (a) 1986-1991 avant la réforme de la PAC, (b) 1991-1996 mise en place de la réforme, (c) 1996-2001 évolution à moyen terme. Le ralentissement des rendements observé de 1991 à 1996 paraît lié en partie à la baisse sensible du rapport des prix produits/intrants durant cette période. Pour 1996-2001 la moindre dégradation des rapports de prix projetée induirait une reprise de la progression des rendements, mais à un rythme moindre qu’avant 1991. Divers types de modélisation ou de spécification économétrique permettent ainsi d’estimer comment le rendement du blé varie quand son prix ou celui des intrants se modifie, de nombreux éléments liés jouant aussi un rôle. Mais il faut également prendre en considération la façon dont est interprété par les acteurs le signal des prix. Si un agriculteur estime qu’une hausse des prix n’est qu’un feu de paille qui ne durera que quelques semaines ou mois, il peut ne pas chercher à accroître sa production ou au contraire se hâter de tirer profit d’une hausse passagère ; il ne faut pas oublier par ailleurs que la durée du cycle culturel induit un temps de latence dans la réponse et que l’aléa climatique entraîne une forte variabilité de la production.

1 MAGALI est un modèle macro-économétrique qui décrit l’évolution de l’agriculture française en termes de productions physiques, structures et comptabilité nationale. Son objectif est de simuler les conséquences à moyen terme des principales décisions de politique agricole et des modifications de l’environnement macro-économique sur l’offre, les prix et les coûts, la productivité, la valeur ajoutée, le revenu et l’investissement de l’agriculture. MAGALI a été mis au point par la direction des affaires financières et économiques du Ministère de l’Agriculture et par le bureau de l’agriculture et de l’environnement du Ministère de l’Économie (Madieu, Ramanantsoa, 1995).

Tableau 16 - Sensibilité du rendement des cultures à différents facteurs exogènes dans le modèle Magali (Source : modèle Magali, Ramanantsoa 1995 ; Mathieu, Ramanantsoa, 1997).

(a) sensibilité* des rendements au prix du produit et des intrants évaluée sur la période 1973-1993

<table>
<thead>
<tr>
<th>Rendements</th>
<th>Prix du produit</th>
<th>Prix des engrais</th>
<th>Prix des produits phytosanitaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blé tendre</td>
<td>0,23</td>
<td>-0,04</td>
<td>-0,07</td>
</tr>
<tr>
<td>Orge</td>
<td>0,25</td>
<td>-0,04</td>
<td>-0,05</td>
</tr>
<tr>
<td>Maïs</td>
<td>0,28</td>
<td>-0,09</td>
<td>-0,12</td>
</tr>
<tr>
<td>Blé dur</td>
<td>0,37</td>
<td>-0,06</td>
<td>-0,14</td>
</tr>
<tr>
<td>Avoine</td>
<td>0,16</td>
<td>-</td>
<td>-0,02</td>
</tr>
<tr>
<td>Colza</td>
<td>0,36</td>
<td>-0,07</td>
<td>-0,09</td>
</tr>
<tr>
<td>Tournesol</td>
<td>0,32</td>
<td>-0,06</td>
<td>-0,08</td>
</tr>
<tr>
<td>Pois</td>
<td>0,12</td>
<td>-</td>
<td>-0,12</td>
</tr>
</tbody>
</table>

(*) La sensibilité est mesurée par le multiplicateur : effet (à t+4 t+5) d’un choc entretenu de 1 % d’une variable exogène (en colonne) sur une variable endogène (en ligne) : soit le rendement (a), soit le volume livré (b) (% de variation induite)

(b) évolution comparée sur 3 périodes des rendements et des rapports de prix sorties/intrants

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendements :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Céréales</td>
<td>2,7</td>
<td>1,3</td>
<td>1,7</td>
</tr>
<tr>
<td>Oléagineux</td>
<td>1,0</td>
<td>0,4</td>
<td>2,1</td>
</tr>
<tr>
<td>Rapport de prix :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Céréales/intrants végétaux</td>
<td>0,1</td>
<td>-6,9</td>
<td>-2,6</td>
</tr>
<tr>
<td>Oléagineux/intrants végétaux</td>
<td>-4,7</td>
<td>-10,2</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Tableau 17 - Quelques projections des prix du blé d’ici 2005 selon diverses études.

<table>
<thead>
<tr>
<th>Campagne de commercialisation</th>
<th>Moyenne 92/93-96/97</th>
<th>95/96</th>
<th>96/97</th>
<th>97/98</th>
<th>98/99</th>
<th>99/00</th>
<th>00/01</th>
<th>01/02</th>
<th>02/03</th>
<th>03/04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prix mondial du blé ($/t)*</td>
<td>166</td>
<td>209</td>
<td>184</td>
<td>168</td>
<td>167</td>
<td>165</td>
<td>165</td>
<td>167</td>
<td>173</td>
<td>180</td>
</tr>
<tr>
<td>Prix intérieur US (Kansas City) ($/t)</td>
<td>159</td>
<td>202</td>
<td>178</td>
<td>142</td>
<td>141</td>
<td>139</td>
<td>139</td>
<td>140</td>
<td>146</td>
<td>152</td>
</tr>
<tr>
<td>Prix au producteur dans l’UE (pondéré blé tendre & dur)** (Ecu/t)</td>
<td>149</td>
<td>141</td>
<td>142</td>
<td>130</td>
<td>129</td>
<td>127</td>
<td>127</td>
<td>128</td>
<td>133</td>
<td>139</td>
</tr>
</tbody>
</table>

* prix à l’exportation fab du blé rouge d’hiver aux ports du golfe.
** Prix par année civile. L’impact d’une nouvelle réforme de la PAC (Agenda 2000) n’est pas pris en compte.

b) Projections de l’USDA-ERS "International Agricultural Baseline Projections to 2005" (mai 1997)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prix courants ($/t):</td>
<td></td>
</tr>
<tr>
<td>- au producteur</td>
<td>158</td>
<td>138</td>
<td>141</td>
<td>145</td>
<td>151</td>
<td>158</td>
<td>162</td>
<td>171</td>
<td>176</td>
<td>176</td>
</tr>
<tr>
<td>- mondial, fab, golfe US</td>
<td>184</td>
<td>164</td>
<td>167</td>
<td>171</td>
<td>176</td>
<td>184</td>
<td>187</td>
<td>197</td>
<td>202</td>
<td>202</td>
</tr>
<tr>
<td>Prix constants 1990 ($/t):</td>
<td></td>
</tr>
<tr>
<td>- au producteur</td>
<td>136</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td>118</td>
<td>117</td>
<td>120</td>
<td>120</td>
<td>116</td>
</tr>
<tr>
<td>- mondial FOB, golfe US</td>
<td>158</td>
<td>137</td>
<td>137</td>
<td>136</td>
<td>136</td>
<td>138</td>
<td>136</td>
<td>138</td>
<td>137</td>
<td>133</td>
</tr>
</tbody>
</table>

c) Projections du FAPRI "FAPRI 1997 World Agricultural Outlook" (janvier 1997)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prix mondial fab golfe ($/t)</td>
<td>190</td>
<td>152</td>
<td>149</td>
<td>163</td>
<td>163</td>
<td>169</td>
<td>169</td>
<td>169</td>
<td>171</td>
<td>171</td>
</tr>
<tr>
<td>Prix d’intervention UE (US $/t)*</td>
<td>180</td>
<td>168</td>
<td>167</td>
<td>169</td>
<td>168</td>
<td>169</td>
<td>170</td>
<td>171</td>
<td>172</td>
<td>173</td>
</tr>
</tbody>
</table>

* soit 119 Ecs par tonne.

Fig. 11 - Évolution du prix mondial des céréales et grains (en $US/tonne, dollars 1990 constants).

a) de 1950 à 1994 selon la Banque Mondiale.

Notes et études économiques n° 8, septembre 1998
Mais dans son "World Agricultural Outlook" publié en janvier 1997, le FAPRI\(^1\) projette des prix moins élevés pour la même période : alors que l'USDA table sur un prix moyen à la production aux USA de 169 $/t sur la période 2001-2005, les projections du FAPRI s'établissent à 139 $/t ; le prix mondial est aussi plus bas dans le scénario du FAPRI. Les écarts proviennent notamment des différences d'appréciation sur les surfaces cultivées aux USA compte tenu de la réserve foncière et sur les perspectives de la demande en Afrique du Nord et au Moyen-Orient. Les deux scénarios diffèrent aussi par les projections d'exportations américaines de blé (cf. infra).

* A l'horizon 2010 D. Mitchell et M. Ingeo (1993) du département d'économie internationale de la Banque Mondiale dans leur étude « The world food outlook » aboutissent à une continuation de la baisse du prix mondial du blé (fig. 12). L'étude est basée sur un modèle économétrique d'équilibre partiel réduit au secteur céréalier ; la solution ressort d'un équilibre des exportations nettes et des importations nettes. La surface de chaque culture est fonction de la marge par ha l'année précédente et de l'intérêt relatif des diverses cultures possibles. Le rendement dépend de son trend passé d'évolution, du rapport entre le prix du produit et celui de l'engrais l'année précédente ainsi que de la proportion de surface cultivée en variétés à haut rendement.

* A plus long terme, à l'horizon 2020, une projection effectuée par l'IFPRI (International Food Policy Research Institute, organisme de recherche membre du Groupe Consultatif sur la Recherche Agricole Internationale) aboutit à une diminution des prix réels pour la quasi totalité des produits agricoles entre 1990 et 2020 (Rosegrant, Agcaoili, Perez, 1995) (tabl. 18). L'IFPRI utilise le modèle IMPACT (International Model for Policy Analysis of Agricultural Commodities and Trade), modèle du secteur agricole mondial couvrant 35 pays ou régions et 17 produits. Le prix mondial d'un bien est déterminé par le point où offre et demande solvable s'équilibrent. En cas de non-ajustement, les interactions dans le modèle déclenchent de nouvelles productions, demandes et quantités commercialisées jusqu'à ce qu'un nouvel équilibre soit atteint. On notera que les prix réels des céréales baissent davantage que ceux des produits animaux.

Tableau 18 - Prix réels mondiaux des produits agricoles dans le modèle IMPACT de l'IFPRI à l'horizon 2020 (en dollars 1990)

<table>
<thead>
<tr>
<th>Produit</th>
<th>1990</th>
<th>2020</th>
<th>variation %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blé</td>
<td>156</td>
<td>132</td>
<td>-15</td>
</tr>
<tr>
<td>Riz</td>
<td>231</td>
<td>181</td>
<td>-22</td>
</tr>
<tr>
<td>Maïs</td>
<td>109</td>
<td>84</td>
<td>-23</td>
</tr>
<tr>
<td>Céréales secondaire</td>
<td>89</td>
<td>67</td>
<td>-25</td>
</tr>
<tr>
<td>Soja</td>
<td>247</td>
<td>219</td>
<td>-11</td>
</tr>
<tr>
<td>Racines et tubercules</td>
<td>148</td>
<td>122</td>
<td>-18</td>
</tr>
<tr>
<td>Viande bovine</td>
<td>2062</td>
<td>1947</td>
<td>-6</td>
</tr>
<tr>
<td>Viande de porc</td>
<td>1664</td>
<td>1500</td>
<td>-10</td>
</tr>
<tr>
<td>Viande de mouton</td>
<td>1907</td>
<td>1825</td>
<td>-4</td>
</tr>
<tr>
<td>Volaille</td>
<td>739</td>
<td>662</td>
<td>-10</td>
</tr>
<tr>
<td>Œufs</td>
<td>897</td>
<td>668</td>
<td>-26</td>
</tr>
<tr>
<td>Ensemble des céréales</td>
<td>144</td>
<td>116</td>
<td>-19</td>
</tr>
<tr>
<td>Ensemble des viandes</td>
<td>1587</td>
<td>1441</td>
<td>-9</td>
</tr>
</tbody>
</table>

\(^1\) Le FAPRI (Food and Agricultural Policy Research Institute) (Université de Missouri-Columbia et Université d'état de l'Iowa, en collaboration avec des chercheurs d'autres universités) établit chaque année des projections à 10 ans pour l'agriculture américaine et les marchés internationaux en utilisant un modèle économétrique du secteur agricole ; ses prévisions sont notamment destinées au Congrès américain.

Notes et études économiques n° 8, septembre 1998
Les anticipations sur l'évolution du prix du blé et des céréales en général paraissent donc varier selon l'échéance considérée et les hypothèses prises. Pour l'horizon 2003 l'OCDE envisage un raffermissement des cours mondiaux par rapport à leur niveau de 1990-94, mais sans retrouver tout à fait le pic de 1995. Pour 2010, le modèle de Mitchell et Ingco donnait plutôt une poursuite d'un trend légèrement à la baisse. Mais à plus longue échéance on doit sans doute à nouveau envisager une possibilité de hausse du prix en raison notamment de la montée de la demande mondiale avec la pression démographique et d'une difficulté à augmenter fortement l'offre : les terres arables et l'eau nécessaires à une forte croissance de la production dans les pays en développement sont en quantités limitées ; par ailleurs le changement climatique fait courir certaines menaces comme la submersion de plaines fertiles ou une instabilité accrue. Rosenzweig et Parry (1994) qui ont cherché à établir l'impact du changement climatique sur l'offre alimentaire mondiale évaluent la hausse des prix des céréales en 2060 (date de doublement de la teneur en gaz carbonique par rapport à son niveau actuel selon certains experts) comme variant de +24 % à +145 % par rapport aux prix de 1980, les écarts provenant des différents scénarios climatiques envisagés et du degré d'adaptation dans les conduites des cultures. Toutefois d'ici là d'autres facteurs peuvent se modifier sensiblement.

Les perspectives de la demande mondiale en céréales.

L'évolution des rendements en France dépend des incitations à produire, entre autres de l'évolution de la demande. Celle-ci se décompose en cinq grands postes : les exportations vers l'U.E., celles vers les pays tiers, l'alimentation animale, l'alimentation humaine, l'autoconsommation (tabl. 19). Les exportations jouent un rôle de premier plan car elles absorbent la moitié de la production et sont un des postes susceptibles d'expansion. Bien que les exportations vers l'U.E. soient de loin les plus importantes, la croissance des débouchés est surtout attendue à partir de la demande des pays tiers. On anticipe en effet une forte augmentation de la demande en céréales en Asie et dans la bordure du Pacifique en raison de l'accroissement de la population, de l'urbanisation et de la hausse escomptée du niveau de vie. En outre les pays asiatiques qui s'industrialisent et améliorent ce dernier devraient sans doute consommer davantage de viande, d'où un besoin accru en céréales pour les animaux. On sait qu'une alimentation riche en produits animaux nécessite une forte quantité de céréales primaires comme elles sont transformées par les animaux en viande avec une efficacité assez faible (cf. par exemple Rérat 1994). De surcroît la quantité de terres arables est limitée en Asie, notamment en Chine.
Tableau 19 - La demande en céréales françaises.

<table>
<thead>
<tr>
<th>Ressources</th>
<th>M tonnes</th>
<th>% production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>33,3</td>
<td>100</td>
</tr>
<tr>
<td>Autoconsommation</td>
<td>3,7</td>
<td>11</td>
</tr>
<tr>
<td>Stock de report</td>
<td>2,2</td>
<td>6</td>
</tr>
<tr>
<td>Importation</td>
<td>0,2</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Utilisations

1) Utilisations intérieures

- alimentation humaine | 12,8 | 37 |
- semences | 0,4 | 1 |
- freinetes | 0,3 | 1 |
- aliments du bétail | 6,1 | 18 |

2) Exportations (grains et farines)

- vers l'U.E. | 9,5 | 27 |
- vers pays tiers | 8,4 | 24 |
- aide alimentaire | 0,2 | 0,5 |

3) Stock de report | 2,4 | 7 |

b) Principaux clients des céréales françaises : exportations en 1996-97, toutes céréales (en Mio tonnes)

<table>
<thead>
<tr>
<th>Union européenne</th>
<th>19,93</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dont</td>
<td></td>
</tr>
<tr>
<td>Italie</td>
<td>4,63</td>
</tr>
<tr>
<td>Pays-Bas</td>
<td>3,80</td>
</tr>
<tr>
<td>UEEL</td>
<td>3,71</td>
</tr>
<tr>
<td>Espagne</td>
<td>2,21</td>
</tr>
<tr>
<td>Allemagne</td>
<td>2,12</td>
</tr>
<tr>
<td>Europe hors UE</td>
<td>1,40</td>
</tr>
<tr>
<td>Afrique</td>
<td>4,19</td>
</tr>
<tr>
<td>Dont : Egypte</td>
<td>1,54</td>
</tr>
<tr>
<td>Asie</td>
<td>1,90</td>
</tr>
<tr>
<td>Amérique</td>
<td>0,77</td>
</tr>
<tr>
<td>Total</td>
<td>28,2</td>
</tr>
</tbody>
</table>

Figure 13 - Évolution de la consommation mondiale de blé (Mio t) depuis 15 ans selon ses utilisateurs (Source : Consul International des Céréales, Rapport sur le Marché des Céréales du 28 mars 1996)

Notes et études économiques n° 8, septembre 1998
Mais de nombreux experts ont rappelé que les pays en développement doivent viser dans la mesure du possible à produire eux-mêmes en partie leur propre nourriture plutôt que d’importer massivement à bas prix leurs aliments depuis le marché mondial car cela décourage la production intérieure et entraîne un exode massif des paysans vers les banlieues des grandes villes du Tiers Monde où l’emploi est limité. Dans un certain nombre de pays il paraît important de favoriser la production agricole locale et d'éviter de la déshumaniser par des importations alimentaires à bas prix. Par contre dans les pays où les terres arables sont en quantité limitée – ce qui fait que la mise en culture de terres additionnelles serait fort néfaste pour l’environnement (disparition des forêts, érosion, etc.) – et où par ailleurs l’industrialisation permet des achats sur le marché mondial, on peut envisager au 21ème siècle une augmentation assez sensible des importations de produits agricoles depuis les pays développés à fort potentiel.

On observe de fait depuis 15 ans une croissance de la consommation de blé dans les pays en développement qui représentent plus de la moitié de sa consommation (tabl. 20, fig. 13), ainsi qu’une augmentation de leurs importations de cette céréale.

La demande mondiale de céréales paraît durablement orientée à la hausse (Charvet 1995). En 1995 beaucoup d’experts s’attendaient à une reprise de la croissance des échanges mondiaux de céréales dans les 15 prochaines années après la stagnation observée de 1980 à 1994 (fig. 14). Divers organismes ont réalisé des études prospectives en ce domaine. On ne peut ici les passer toutes en revue, ni les analyser en détail. On présentera succinctement les résultats de :

- l’étude de la FAO à l’horizon 2010 (Alexandratos, 1995),
- celle de Mitchell et Ingco (1993) de la Banque Mondiale pour le même horizon,
- les projections de l’USDA-ERS "International Agricultural Baseline Projections to 2005" publiées en mai 1997

Figure 14 - Évolution des échanges mondiaux de céréales depuis 1950 et projections pour 2010 (en millions de tonnes) (Source : Charvet 1995, d’après USDA jusqu’en 1994, puis FAO et Mitchell & Ingco pour 2010).
Tabl. 20 - Bilan de la consommation de blé au niveau mondial - Campagne de commercialisation 1995-96 (Source : Conseil International des Céréales, Rapport sur le marché des céréales du 3/04/97)

(1ère sous-colonne : en Mio tonnes ; 2ème sous-colonne en % du total des utilisations mondiales)

<table>
<thead>
<tr>
<th></th>
<th>Alimentation humaine</th>
<th>Alimentation animale</th>
<th>Autres usages</th>
<th>Ensemble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pays en développement</td>
<td>287 52%</td>
<td>7 1%</td>
<td>27 5%</td>
<td>321 58%</td>
</tr>
<tr>
<td>Pays Industrialisés (sauf ceux en transition)</td>
<td>72 13%</td>
<td>46 8%</td>
<td>13 2%</td>
<td>131 24%</td>
</tr>
<tr>
<td>ex URSS et PECO</td>
<td>52 9%</td>
<td>36 6%</td>
<td>15 3%</td>
<td>103 18%</td>
</tr>
<tr>
<td>Total monde</td>
<td>411 74%</td>
<td>88 16%</td>
<td>57 10%</td>
<td>556 100%</td>
</tr>
</tbody>
</table>

Tableau 21 - Importations nettes de céréales dans les pays en développement à l’horizon 2010 (Mt) d’après les projections FAO et de Mitchell & Ingeo de la Banque Mondiale (cité par Charvet 1995)

<table>
<thead>
<tr>
<th></th>
<th>Projection 2010 selon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mitchell & Ingeo</td>
</tr>
<tr>
<td>Afrique du Nord et Proche Orient</td>
<td>73</td>
</tr>
<tr>
<td>Asie Orientale (Chine comprise)</td>
<td>60</td>
</tr>
<tr>
<td>Asie méridionale (Inde comprise)</td>
<td>32</td>
</tr>
<tr>
<td>Amérique latine et Caraibes</td>
<td>28</td>
</tr>
<tr>
<td>Afrique noire</td>
<td>14</td>
</tr>
<tr>
<td>Autres</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>210</td>
</tr>
</tbody>
</table>

a) exportations nettes en Mio tonnes.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Etats-Unis</td>
<td>29</td>
<td>80</td>
<td>132</td>
<td>18</td>
<td>28</td>
<td>55</td>
</tr>
<tr>
<td>UE à 10</td>
<td>-21</td>
<td>24</td>
<td>45</td>
<td>-10</td>
<td>19</td>
<td>29</td>
</tr>
<tr>
<td>Canada</td>
<td>10</td>
<td>26</td>
<td>35</td>
<td>10</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>Australie</td>
<td>8</td>
<td>15</td>
<td>15</td>
<td>6,5</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Argentine</td>
<td>4</td>
<td>11</td>
<td>15</td>
<td>1</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Ex-URSS</td>
<td>6</td>
<td>-26</td>
<td>12</td>
<td>4</td>
<td>-15</td>
<td>5</td>
</tr>
<tr>
<td>Thaïlande</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>0,5</td>
<td>1</td>
<td>0,1</td>
</tr>
</tbody>
</table>

b) part du marché en % chaque année.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Etats-Unis</td>
<td>48</td>
<td>49</td>
<td>49</td>
<td>50</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>UE à 10</td>
<td>-</td>
<td>15</td>
<td>17</td>
<td>-</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>Canada</td>
<td>17</td>
<td>16</td>
<td>13</td>
<td>27</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>Australie</td>
<td>13</td>
<td>9</td>
<td>6</td>
<td>18</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Argentine</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Ex-URSS</td>
<td>10</td>
<td>-</td>
<td>5</td>
<td>12</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Thaïlande</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes et études économiques n° 8, septembre 1998
• A l’horizon 2010 les projections de la FAO et de Mitchell & Ingco diffèrent quelque peu, ces derniers prévoyant un niveau de demande plus élevé que la FAO (Alexandratos 1995 ; Mitchell et Ingco 1993). Les points de divergence entre les deux études portent notamment sur le niveau d’exportation ou d’importation nette de céréales de l’ex-URSS et de l’Asie (tableau 21). On peut ajouter qu’un autre facteur d’incertitude est dû aux risques de conflits dans ces régions.

Dans l’hypothèse de Mitchell et Ingco où les échanges mondiaux de céréales sont de 267 Mt à l’horizon 2010, les États-Unis détiennent près de la moitié de ce marché, l’U.E (échanges intra-communautaires entre pays membres non comptés) 17 %, le Canada 13 %. Par rapport à la situation du début des années 1990, si le volume d’exportations nettes de chacun des cinq principaux exportateurs mondiaux croît, il y a finalement assez peu de modification en termes de parts de marché entre eux, bien que quelques nouveaux exportateurs puissent apparaître. En particulier le leadership des États-Unis se maintient (tableau 22). La FAO estime également que ce sont principalement l’Amérique du Nord et l’Australie qui bénéficient de l’accroissement des exportations nettes globales, celles de l’Europe de l’Ouest progressant peu.

• L’autre étude américaine, celle du FAPRI, aboutit à des résultats différents à l’horizon 2004/05 (tableau 24). L’U.E. accroît ses exportations de blé en quantité et en pourcentage entre 1994-96 et 2005 malgré une régression durant les années intermédiaires. De leur côté les ventes de blé américaines restent à peu près stables en volume, et voient leur part diminuer. Un élément explicatif tient à des perspectives de prix du blé élevé dans le scénario USDA-ERS (cf. supra) en raison d’une demande plus forte, avec notamment des importations accrues de la part de la Chine, de l’Egypte, de l’ex-URSS ; au total les importations mondiales de blé en 2005 sont évaluées à 120 Mio t par l’USDA-ERS et 100 Mio t par le FAPRI.

Figure 15. Evolution passée des exportations de blé des 5 grands exportateurs mondiaux

a) exportations en Mio t (1972-1996)

b) % exportations mondiales (1986-1997)

Tableau 23 - Diverses projections des exportations de blé (et céréales secondaires) à l’horizon 2005 (exportations nettes en Mio tonnes des principaux exportateurs mondiaux.)

a) pour le blé selon l’étude de l’USDA-ERS (mai 1997)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mio t</td>
<td>%</td>
<td>Mio t</td>
</tr>
<tr>
<td>Etats-Unis</td>
<td>29,66</td>
<td>30</td>
<td>33,47</td>
</tr>
<tr>
<td>UE à 15 (extra)</td>
<td>16,0</td>
<td>16</td>
<td>14,24</td>
</tr>
<tr>
<td>Canada</td>
<td>18,33</td>
<td>19</td>
<td>18,33</td>
</tr>
<tr>
<td>Austrailie</td>
<td>12,04</td>
<td>12</td>
<td>14,90</td>
</tr>
<tr>
<td>Argentine</td>
<td>6,82</td>
<td>7</td>
<td>9,38</td>
</tr>
<tr>
<td>Europe de l'Est</td>
<td>-0,31</td>
<td>0</td>
<td>1,78</td>
</tr>
<tr>
<td>Ukraine</td>
<td>0,01</td>
<td>0</td>
<td>0,43</td>
</tr>
<tr>
<td>Total</td>
<td>98,66</td>
<td>100</td>
<td>106,59</td>
</tr>
</tbody>
</table>

b) selon le scénario du FAPRI (janvier 1997).

<table>
<thead>
<tr>
<th></th>
<th>B l é</th>
<th>Céréales secondaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>30,4</td>
<td>30,5</td>
</tr>
<tr>
<td>UE 15 (extra)</td>
<td>14,4</td>
<td>10,9</td>
</tr>
<tr>
<td>Canada</td>
<td>17,9</td>
<td>15,9</td>
</tr>
<tr>
<td>Australie</td>
<td>11,6</td>
<td>12,8</td>
</tr>
<tr>
<td>Argentine</td>
<td>7,8</td>
<td>4,9</td>
</tr>
<tr>
<td>Europe de l'Est</td>
<td>1,5</td>
<td>3,1</td>
</tr>
<tr>
<td>Ukraine</td>
<td>0,3</td>
<td>0,9</td>
</tr>
<tr>
<td>Total des exportateurs nets*</td>
<td>83,9</td>
<td>79,0</td>
</tr>
</tbody>
</table>

* pour les céréales secondaires aux 7 pays listés s’ajoute l’Afrique du Sud, mais ses exportations sont faibles.

c) selon les Perspectives de l’OCDE (1998)

<table>
<thead>
<tr>
<th></th>
<th>Exportations de blé</th>
<th>Exportations céréales secondaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>30,3</td>
<td>31,9</td>
</tr>
<tr>
<td>UE 15 (extra)</td>
<td>18,1</td>
<td>21,9</td>
</tr>
<tr>
<td>Canada</td>
<td>19,2</td>
<td>24,9</td>
</tr>
<tr>
<td>Australie</td>
<td>12,6</td>
<td>12,8</td>
</tr>
<tr>
<td>Argentine</td>
<td>6,8</td>
<td>7,4</td>
</tr>
<tr>
<td>Total des 5 exportateurs</td>
<td>87,0</td>
<td>98,9</td>
</tr>
</tbody>
</table>

Notes et études économiques n° 8, septembre 1998

Au prochain siècle la croissance de la production agricole pourra-t-elle suivre celle de la population ? Nous rappellerons ici seulement quelques taux de croissance envisagés (tableau 24), sans traiter ce sujet qui nécessiterait de longs développements et que l’on a déjà abordé par ailleurs (Bonny 1997). On prévoit une augmentation de la production agricole un peu plus forte que celle de la population. La terre peut nourrir 10 milliards d’hommes, mais au 20ème siècle, malgré une population bien inférieure à 10 milliards et l’accroissement considérable de la richesse produite depuis le début du 19ème siècle (Maddison 1995), les inégalités en matière de répartition font qu’une part notable de la population mondiale souffre de sous-alimentation et de malnutrition ; l’un des problèmes majeurs est en effet celui de la demande non solvable qui, faute de ressources, ne peut acheter les marchandises disponibles.

Tableau 24 - Taux de croissance de la population, des rendements, et de la production agricole envisagés au 21ème siècle (en % de croissance par an pour chaque période)
(source : modèle Basic Linked Sector, 1988).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>1,75</td>
<td>1,7</td>
<td>1,3</td>
<td>0,8</td>
<td>0,5</td>
</tr>
<tr>
<td>Produit intérieur brut</td>
<td>3,1</td>
<td>2,9</td>
<td>2,0</td>
<td>1,5</td>
<td>1,1</td>
</tr>
<tr>
<td>Rendement céréalier</td>
<td>2,0*</td>
<td>1,2</td>
<td>0,7</td>
<td>0,5</td>
<td>0,4</td>
</tr>
<tr>
<td>Production agricole</td>
<td>2</td>
<td>1,8</td>
<td>1,3</td>
<td>1,0</td>
<td>0,7</td>
</tr>
</tbody>
</table>

* en France sur la même période la croissance du rendement céréalier a été de 2,3 %.

Quelles options de l’Union Européenne en matière de politique agricole et d’exportations ?

pour éviter des charges d'amortissement du matériel élevées ; une telle tendance s'est observée à la fin des années 1980 (Bonny, 1993). Cependant pour certains agronomes, même avec le niveau de charges fixes et de mécanisation observé dans l'échantillon enquêté par l'ONIC, il serait rentable de désintensifier. Une telle conduite plus extensive est aussi proposée pour le blé-éthanol, culture de diversification où il est particulièrement important de réduire les coûts de production tout en respectant l'environnement (fig. 20).

Fig. 16 - Comparaison des coûts de production et marges brutes selon deux itinéraires techniques.
(Eureka, Balthazar et Tribun sont des variétés de blé ; l'écart de rendement entre les deux conduites est de 12 à 15 q/ha)

De son côté pour pouvoir diminuer les coûts au quintal de blé produit d'ici 2005, le groupe Céréaliers de France envisage dans les régions à haut potentiel de grandes exploitations (environ 400 ha) et une conduite à haut contenu technologique visant des rendements élevés. Cela devrait permettre pensent-ils de réduire sensiblement le coût de production du blé qui deviendrait alors compétitif sur le marché mondial. Est projetée par exemple l'évolution culturale présentée au tableau 25. Mais celle-ci, qui suppose un haut rendement avec un temps de travail à l'ha très réduit, ne sera sans doute accessible qu'à un nombre limité d'agriculteurs très encadrés techniquement pour bénéficier de conseils en matière d'interventions culturelles permettant une productivité élevée sans passer eux-mêmes du temps en observations et relevés. Toutefois on peut envisager pour demain une diversification accrue de différents types d'agriculture (Bonny 1997).

Tableau 25 - Évolution économique envisagée d'ici 10 ans par certains responsables du secteur céréralier pour la culture du blé en grande structure et zone à fort potentiel

<table>
<thead>
<tr>
<th></th>
<th>1995</th>
<th>2005-2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charges totales par ha :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- intérêts</td>
<td>6700 F</td>
<td>5000 F</td>
</tr>
<tr>
<td>- épargne</td>
<td>2400 F</td>
<td>2000 F</td>
</tr>
<tr>
<td>- main-d'oeuvre</td>
<td>1000 F</td>
<td>700 F</td>
</tr>
<tr>
<td>- charges de structure</td>
<td>1200 F</td>
<td>600 F</td>
</tr>
<tr>
<td></td>
<td>2100 F</td>
<td>1700 F</td>
</tr>
<tr>
<td>Nombre d'heures de travail par ha</td>
<td>5 à 6 h.</td>
<td>2 à 3 h.</td>
</tr>
<tr>
<td>Rendement par ha</td>
<td>90 q</td>
<td>105 q</td>
</tr>
<tr>
<td>Coût de production par q (hors inflation)</td>
<td>75 F</td>
<td>50 F</td>
</tr>
</tbody>
</table>

Notes et études économiques n° 8, septembre 1998
L'impact des réglementations environnementales en France.

Comme les pollutions d'origine agricole et les préoccupations environnementales se sont accrues, diverses mesures ont commencé à être prises, en particulier des réglementations et des incitations visant à une agriculture plus propre. Peuvent-elles affecter fortement ce secteur et le réorienter vers une certaine désintensification ? Les mesures prises jusqu'alors par les pouvoirs publics sont de diverses natures : (a) sensibilisation pour éviter les pollutions ; (b) réglementations comme la Directive Nitrates ; (c) incitations financières (cf. les mesures agri-environnementales accompagnant la réforme de la PAC) ; (d) taxation selon le principe pollueur-payeur ; (e) labellisation écologique concernant actuellement presque uniquement les produits biologiques. On en examine ici quelques-unes pour tenter d'appréhender leurs premiers impacts.

La directive « nitrates » (directive 91/676/CEE) adoptée par le Conseil des Ministres de la CEE en décembre 1991, vise à protéger les eaux de rivières, des nappes et les eaux côtières des pollutions nitratées. Dans chaque État-membre des zones dites "vulnérables" doivent être définies d'après la teneur en nitrates des eaux souterraines et de surface et un code qui recense les "bonnes pratiques agricoles" doit être élaboré, ces dernières devant être rendues obligatoires dans les zones vulnérables. En France le code des bonnes pratiques agricoles a été publié dans un arrêté du Journal Officiel en novembre 1993. Il définit diverses règles pour l'épandage des fumiers, lisiers et engrais minéraux en matière de périodes à éviter, de conditions agro-pédoclimatiques, d'estimations des quantités, etc. La délimitation des zones vulnérables (atteintes par la pollution ou menacées) a été assez longue et difficile, certains agriculteurs ayant refusé dans un premier temps que leur région y soit inclue. Le décret, signé le 4 mars 1996, transcrivant en droit français la directive nitrates a aussi rencontré diverses oppositions. Finalement les zones vulnérables couvrent une SAU d'environ 13 millions d'ha (46 % de la SAU nationale) et 440 000 exploitations à temps complet ou partiel sont concernées.

Le code des bonnes pratiques agricoles est facultatif en dehors des zones vulnérables et dans ces dernières les "programmes d'actions" s'appuient largement sur un diagnostic préalable pour définir et adapter localement les mesures du code des bonnes pratiques agricoles élaboré au niveau national, et par la suite réaliser un suivi de l'efficacité du dispositif. Ces programmes d'action portent sur :

- l'équilibre de la fertilisation. Au terme du premier programme d'action en 1999, la quantité d'azote d'origine animale épandue ne devra pas dépasser 210 kg par ha et par an ; à l'issue du deuxième programme en 2003 cette quantité sera abaissée à 170 kg/ha. Mais les apports d'engrais minéraux ne sont pas réglementés ;
- l'interdiction de l'épandage d'engrais azotés sur les sols non cultivés et pour les cultures en automne et en début d'hiver, sauf dérogation ;
- la réglementation de l'épandage avec certaines interdictions dans les sols ponctus, enneigés, gelés ou détrempés ;
- les documents d'enregistrement de leurs pratiques de fertilisation azotée (cahiers de fertilisation) ne sont pas obligatoires pour les agriculteurs. Mais les préfets devront établir des indicateurs pour le suivi et l'évaluation de l'efficacité des programmes d'action.

Ainsi ce sont essentiellement les exploitations d'élevage qui sont visées. Les exploitations à orientation végétale situées en zone vulnérable sont concernées aussi d'une part par l'interdiction d'épandage des engrais azotés à certaines périodes d'automne et début d'hiver, d'autre part si elles utilisent une fumure organique. D'après l'enquête "Pratiques culturelles" du SCEES de 1994, 6 % des surfaces en blé en employeraient, mais 25 % pour le maïs en moyenne, avec de fortes variations selon les régions : en Bretagne par exemple 28 % des surfaces en blé reçoivent une fumure organique. Toutefois la dose maximale d'azote d'origine organique (210 kg puis 170 kg) devrait peu affecter la culture de blé où l'on épand en moyenne 160 kg d'azote minéral. Peuvent aussi être touchés par la Directive des agriculteurs qui emploient des boues, gadoues ou effluents d'industries agro-alimentaires. Finalement les réglementations de la directive nitrates devraient donc peu modifier la grande culture. Cependant cette dernière peut être touchée par les mesures réglementaires de façon indirecte, notamment par ce qui concerne l'évolution de la réglementation phyto-sanitaire (interdiction de certaines matières actives ou contrôle technique du matériel d'épandage des pesticides). En définitive en son état actuel la directive

Notes et études économiques n° 8, septembre 1998
nitrates ne devrait pas induire de désintensification sensible dans les zones de grande culture ; par contre pour le blé cultivé en zones vulnérables et fertilisé avec des effluents organiques les apports de ces derniers devront peut-être être réduits : cela aura-t-il un effet sur les rendements ou la conduite des cultures ? Il est probable que le rendement sera peu affecté.

Les exploitations cultivant du blé ont-elles été touchées par des mesures agri-environnementales ? Celles inscrites dans le cadre de la réforme de la PAC de 1992 ont une portée modeste en nombre d'agriculteurs impliqués. Il s'agit de mesures incitatives concernant les « méthodes de production agricole compatibles avec les exigences de la protection de l'environnement ainsi que l'entretien de l'espace naturel » (règlement CEE n° 2078/92 du 30 juin 1992). Des aides cofinancées par le FEOGA sont données aux agriculteurs pour les inciter à adopter des méthodes de production peu polluantes. Outre la prime à l'herbe et les mesures locales visant les biotopes rares et sensibles (OGAF environnement faisant suite à l'"article 19") qui ne s'appliquent pas à la grande culture, celle-ci peut être concernée par les plans de développement durable mais ils sont encore peu nombreux : la phase de test a concerné 1200 exploitations dont environ la moitié continueront dans le cadre d'un contrat. La grande culture aurait pu être touchée par certaines mesures agri-environnementales de type régional, portant sur la protection des eaux. Les indemnités accordées variaient selon les engagements :

- réduction des intrants : 1 000 à 1 200 F/ha pour l'azote ; 800 F/ha pour les produits phytosanitaires (si la réduction concerne les deux intrants, la prime totale ne peut dépasser 1 200 F/ha)
- reconversion des terres arables en herbes extensifs (2 500 F à 3 000 F par ha)
- gel de terre pour 20 ans (3 000 à 3 600 F/ha)
- reconversion à l'agriculture biologique : prime variable selon les cultures concernées.

<table>
<thead>
<tr>
<th>Principaux engagements des agriculteurs dans le cahier des charges réduction des intrants dans le cadre des mesures agri-environnementales.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Pour l’azote, on cherche à réduire les risques de fuite des nitrates dans les eaux. L'engagement est de :</td>
</tr>
<tr>
<td>- baisser de 20 % la dose d’azote habituellement préconisée pour un rendement moyen atteint sur la parcelle ;</td>
</tr>
<tr>
<td>- établir un plan prévisionnel de fumure.</td>
</tr>
<tr>
<td>- fractionner les apports ;</td>
</tr>
<tr>
<td>- limiter les fertilisants organiques d’origine animale à 70 kg N/ha ;</td>
</tr>
<tr>
<td>- ne pas utiliser de raccourcisseurs de paille en général ;</td>
</tr>
<tr>
<td>- implanter des cultures pièges à nitrates en interculture avant les cultures de printemps ;</td>
</tr>
<tr>
<td>- retenir une pratique raisonnée de protection des cultures (conseils des Avertissements Agricoles, etc.) ;</td>
</tr>
<tr>
<td>- tenir un cahier parcellaire où sont consignés les apports et interventions.</td>
</tr>
<tr>
<td>2) Pour les produits phytosanitaires, on préconise une stratégie de protection intégrée. L'agriculteur s'engage à :</td>
</tr>
<tr>
<td>- établir un plan prévisionnel de conduite et de protection des cultures ;</td>
</tr>
<tr>
<td>- tenir un cahier parcellaire où sont consignés traitements et interventions ;</td>
</tr>
<tr>
<td>- entretenir correctement le pulvérisateur ;</td>
</tr>
<tr>
<td>- suivre les conseils du Service de la Protection des Végétaux ;</td>
</tr>
<tr>
<td>- parmi 30 matières actives à surveiller en priorité, certaines pourront être interdites dans certains départements.</td>
</tr>
</tbody>
</table>

Mais pour les agriculteurs cette procédure paraît assez lourde, les contraintes nombreuses et la conduite culturale préconisée peut être jugée comme difficile, par exemple de ne pas utiliser de raccourcisseurs de paille ou certains produits phytosanitaires. De ce fait les surfaces engagées dans ces opérations sont extrêmement modestes : à la mi-97 2200 contrats environ avaient été signés en réduction d'intrants, correspondant à 52 750 ha (la conversion à l'agriculture biologique concernait de son côté 1659 contrats, soit 41 200 ha). Les aides liées à ces mesures de réduction d'intrants (de l'ordre de 55 millions de F) sont infimes (de l'ordre du millième) comparées aux primes compensatoires reçues par l'ensemble des exploitations en France.

Notes et études économiques n° 8, septembre 1998
Ainsi l’impact des réglementations environnementales en France paraît avoir été jusqu’à présent faible en grande culture, et ce n’est certainement pas cela qui a infléchi la progression des rendements entre 1991 et 1995. Certes diverses initiatives prises pour sensibiliser les agriculteurs à la réduction des pollutions azotées ont pu contribuer à un meilleur raisonnement des apports ; on a même observé un début de désintensification dans diverses zones. Mais le déterminant majeur pour les agriculteurs en la matière a été jusqu’à présent le plus souvent économique car l’argumentaire environnemental est fréquemment perçu comme une intrusion des urbains dans un domaine "où ils ne connaissent rien" et comme une contradiction par rapport aux préconisations de naguère. Cependant on peut noter une certaine évolution en matière de conseils diffusés aux agriculteurs par les techniciens des Chambres d’Agriculture, mais sans doute peu par les vendeurs d’intrants dont l’influence est notable. L’Association Nationale pour le Développement Agricole (ANDA) a de son côté promu le programme Ferti-Mieux, opération de conseil en fertilisation visant la préservation de la qualité de l’eau sans réduction du revenu des agriculteurs. Son pilotage regroupe les différents acteurs concernés : professionnels agricoles, pouvoirs publics, élus locaux, utilisateurs de l’eau, etc. Un diagnostic est d’abord établi sur la zone et débouche sur divers conseils en matière de pratiques de fertilisation et de conduites culturelles. Une évaluation est effectuée ensuite et un label est attribué quand on a jugé de l’efficacité des opérations. Début 1998, 54 projets différents étaient en cours en France sur près de 1,5 million d’ha concernant près de 26 000 agriculteurs ; 47 actions avaient été labellisées et 7 prélabellisées. Après avoir dans un premier temps souvent rejeté les accusations de pollution et exprimé de la réticence envers toute mesure perçue comme un tant soit peu contraignante, la profession agricole se montre désormais plus ouverte à des actions préventives, en particulier pour améliorer son image de marque.

Ainsi les céréaliens ont eu jusqu’à présent assez peu d’incitations à désintensifier. D’une part en 1995 le prix du blé s’est trouvé à un niveau plus élevé que celui initialement prévu du fait de la hausse des cours mondiaux, d’autre part les primes à la réduction d’intrants – d’un montant moindre que les indemnités compensatoires – n’ont suscité l’intérêt que d’un nombre très réduit d’agriculteurs en 1993-1996. Cependant à la fin des années 1980 et au début des années 1990 on avait observé une légère désintensification, plus exactement une recherche de meilleure efficacité en raison notamment de la baisse des prix des céréales. Les modes de conduites des cultures seront probablement davantage raisonnés demain, surtout pour le blé où de nombreux indicateurs de pilotage ont été mis au point ou sont en cours d’élaboration. Une certaine désintensification pourrait s’observer à nouveau en cas de chute même temporaire des cours mondiaux du blé. En 1999-2000 que sera la nouvelle PAC ? On peut envisager une baisse des aides, un découplage plus affirmé entre aides et production et une plus forte implication environnementale. Les USA pourraient demander lors des prochaines négociations de l’OMC que l’UE réduise ses aides aux agriculteurs. Ces dernières seraient dans ce cas davantage fondées sur des critères de protection de l’environnement et d’entretien du paysage. Peut-être pourrait-on observer alors une désintensification de la production dans certaines régions ? Cependant comme on s’attend par ailleurs à une croissance de la demande mondiale au 21ème siècle, une incitation à produire davantage, mais à bas coût pourrait réapparaître. Tout dépend comment sera alors la compétition sur les marchés mondiaux entre les grands pays exportateurs : y aura-t-il place pour un certain nombre de pays vendeurs se partageant les marchés, ou bien les États-Unis joueront-ils un rôle de leader incontesté ? Il faut également prendre en considération que les possibilités d’exporter sont liées à des aspects de politiques commerciales, mais aussi à d’autres facteurs : qualité des produits, influence géopolitique, négociations politiques ou commerciales concernant d’autres secteurs entre pays, etc.
Conclusion

La réflexion prospective conduite ici sur les rendements se situe dans une problématique générale où l’on considère que l’avenir n’est pas écrit, qu’il résulte pour une part importante de l’action des hommes. L’objectif n’est pas d’effectuer de la divination, de la prédiction ou de recourir à des oracles, mais de mieux connaître certaines tendances et enjeux pour éclairer l’action présente, et tenter d’anticiper des problèmes qui pourraient devenir importants. En ce sens il ne faut pas oublier qu’une prospective particulièrement réussie peut être de signaler une menace qui ne se concrétisera pas précisément parce qu’on avertit de son risque : par exemple si une réflexion sur l’avenir conduit à estimer que telle ressource importante (e.g. une forme d’énergie fossile, l’eau, etc.) risque de manquer à moyen terme vu le rythme de croissance de son utilisation et si cela est connu et pris au sérieux par les acteurs économiques, ils mettront sans doute en œuvre des actions, des politiques et des stratégies qui éviteront d’arriver à la pénurie. Le but essentiel de la prospective est en effet de donner des éléments de compréhension, de réflexion et d’anticipation pour mieux répondre aux défis de demain ; elle permet d’orienter les actions présentes dans cette perspective, d’où le paradoxe apparent qu’une prospective réussie peut être une prospective qui ne se réalise pas. Une de ses fonctions importantes est de susciter la réflexion et le débat sur l’avenir, en particulier sur les choix collectifs et les décisions à prendre. Mais l’avenir est en partie prédéterminé surtout à court et moyen terme par des tendances lourdes, par des incertitudes dues aux infrastructures en place qu’on ne modifie pas en un touremain, par le poids des institutions et aussi par des phénomènes déjà présents ou en cours, mais parfois mal repérés. Par ailleurs, si les hommes font l’histoire, ils ne savent pas l’histoire qu’ils font : souvent celle-ci n’est comprise et interprétée qu’à posteriori, parfois longtemps après. En outre on ne sait pas comment agiront les autres (groupes sociaux, États, etc.). Ainsi même si l’avenir dépend en grande partie des hommes, les facteurs d’incertitude sont nombreux.

Cette recherche ne s’est pas donnée pour but de construire différents scénarios d’évolution contrastés des rendements demain en fonction de diverses hypothèses sur les modifications possibles de l’environnement économique et technologique national et international. L’objectif a d’abord été de repérer divers éléments importants qui jouent sur l’évolution des rendements. Ce dernier est en effet la résultante de nombreux facteurs. Il dépend notamment des objectifs que se fixent en ce domaine les divers acteurs concernés. Cependant le rendement n’est pas un but pour lui-même, il résulte d’objectifs autres, notamment la recherche d’un certain revenu par l’agriculteur sans charges ou contraintes de travail trop excessives ; mais il faut également tenir compte des impératifs de qualité du produit (le paiement selon ce critère se développe), d’un souci de réduire les coûts de production et de ne pas dégrader l’environnement.

On a observé en France dans les quatre décennies passées une très forte croissance des rendements (gain de 1,3 q par ha et par an, taux de croissance annuelle moyen de 2,8 %) liée à un objectif explicite en la matière, voire quasiment à un mot d’ordre "la bataille de la production", la course à la productivité. Cet objectif est-il encore d’actualité ? La réponse varie selon les acteurs considérés et fait l’objet d’un certain débat. Si beaucoup considèrent encore que « le rendement fait la marge », divers travaux ont montré que cette dernière était meilleure avec une certaine désintensification, et non en visant le rendement maximum atteignable une année sur dix. Mais cela doit aller de pair avec une conduite raisonnée, ce qui peut requérir davantage de temps d’observation et entraîner un léger accroissement du risque. On observe ainsi des points de vue assez contrastés entre ceux qui plaident pour une conduite intensive et d’autres soulignant qu’une conduite raisonnée bien maîtrisée donne une meilleure marge, à fortiori avec un bas prix du blé. Les protagonistes pensent également que le mode de conduite qu’ils préconisent assure non seulement de bons résultats économiques, mais aussi d’autres avantages concernant la qualité ou l’environnement. Ces opinions divergentes sur l’intérêt relatif de l’intensification ou d’une certaine désintensification vont fréquemment de pair avec des points de vue différents en matière de perspectives des rendements. Ceux qui prônent l’intensification pensent souvent que le fort trend de croissance des dernières décennies se poursuivra encore pendant une dizaine d’années au moins (à condition bien sûr d’opter pour une conduite intensive). Par contre ceux qui plaident pour une certaine désintensification estiment fréquemment que la croissance des rendements va

Notes et études économiques n° 8, septembre 1998
s’infléchir légèrement et suivre un trend un peu moins élevé. On notera d’ailleurs que depuis 10-15 ans le taux de croissance annuelle moyen a un peu baissé. Les acteurs projettent ainsi assez souvent des perspectives liées à ce qu’ils prônent, ce qui ne saurait surprendre étant donné qu’en France les rendements dépendent fortement des objectifs et des options en la matière.

Mais d’autres facteurs fort difficiles à anticiper ont une influence notable, en particulier ce qui concerne les prix, la demande mondiale, les orientations de politique agricole. A moyen et surtout long terme la demande mondiale devrait certainement augmenter tirant peut-être les prix à la hausse — ou à une moindre tendance à la baisse —, ce qui marquerait une rupture par rapport au trend des décennies d’après guerre. Sera-t-il alors nécessaire de continuer à accroître les rendements en France et en Europe pour exporter davantage ? Il est certes préférable d’augmenter la production dans les pays en développement eux-mêmes plutôt que d’y importer des denrées à bas prix qui déstabilisent la production locale et la découragent, ce qui condamne les paysans à l’exode vers les banlieues des mégapoles où les possibilités d’emploi sont faibles. Mais dans certaines grandes régions du monde, notamment en Asie, la quantité de terres arables par habitant est fort limitée. De ce fait des importations alimentaires depuis les pays développés disposant de grande capacité productives paraissent relativement justifiées si elles n’entraînent pas une dépendance alimentaire trop forte : elles permettraient notamment d’épargner les ressources naturelles locales souvent fragiles, d’éviter des déforestations et de l’érosion supplémentaires. Toutefois bien des inconnues subsistent sur ce que sera le niveau de la demande en céréales, en liaison notamment avec la consommation de viande. On peut même envisager un scénario où les pays occidentaux en consommeraient moins pour des raisons éthiques, de santé ou à cause des répercussions de la maladie de la vache folle, d’où une plus grande quantité de céréales disponibles. Par ailleurs les pays en voie d’industrialisation et en particulier la Chine vont-ils accroître fortement leur consommation de viande en suivant le modèle occidental passé ? Des inconnues subsistent en ce domaine, par exemple si la Chine développait la production de spirulines ou de protéines d’organismes unicellulaires (POU) ou d’autres voies pour obtenir des compléments protéiques à moindre coût. De ce fait la croissance de la demande mondiale en céréales pourrait être moindre que prévue. Ce pourrait être aussi le cas si les applications des biotechnologies permettaient une croissance des rendements sans dégrader l’environnement. A l’opposé on peut envisager un scénario où la demande serait accrue si des désastres écologiques ou le changement climatique global conduisaient à une chute de production en certains pays gros consommateurs ou gros producteurs : dans ce cas d’autres pays devraient augmenter fortement leur production et leurs exportations.

Dans l’hypothèse de demande en hausse et de débouchés accrus, pourra-t-on améliorer les rendements en France demain ou bien est-on trop proche de l’asymptote, du plafond de production ? Rappelons d’abord l’extrême diversité des rendements dans le monde qui pour le blé varient selon les pays entre 3 q/ha et 85 q/ha en moyenne triennale 1994/96 (25 q/ha en moyenne mondiale). Il semblerait a priori plus logique et plus aisé d’accroître les plus bas rendements mondiaux mais il existe de sévères facteurs limitants, notamment la disponibilité en eau ou le climat. L’Europe du Nord-Ouest est favorisée en ce domaine, ce qui explique ses forts rendements, bien supérieurs à ceux des autres continents. Mais précisément pourra-t-on les accroître encore, par exemple en France ? Les rendements actuels y sont légèrement supérieurs à la moitié du rendement potentiel maximum estimé aujourd’hui à environ 145 q/ha dans le Bassin Parisien. La limite théorique est donc loin, une progression devrait être tout à fait possible, mais elle se heurte à des freins. En particulier il paraît assez difficile de lever les facteurs limitants actuels : les conditions agro-climatiques, les problèmes d’organisation du travail permettant de faire les interventions et traitements au moment le plus adéquat, le risque de certains parasites et maladies.

A plus long terme il paraît en théorie possible d’augmenter les potentiels de rendement. On a vu par exemple que le rendement global de la photosynthèse est très bas (inférieur à 1 %). La progression des connaissances dans l’avenir, les apports de la biologie moléculaire qui permet de comprendre certains mécanismes physiologiques fondamentaux, ce qui donne des clés d’intervention possible, pourraient peut-être rendre possible une amélioration du rendement photosynthétique (ou autre) et par là une croissance de la productivité par ha. Il convient en effet de souligner qu’on est très loin de la limite biophysique en terme de productivité du blé en matière sèche par ha. En ce sens on ne peut pas
comparer les rendements aux résultats en matière de course de vitesse chez les athlètes : la limite biophysique est dans ce dernier cas relativement proche ! Ainsi donc une croissance des rendements paraît encore en théorie possible. Il faut noter à ce propos que « la loi des rendements décroissants » évoquée dans la littérature économique ne signifie pas que les rendements vont baisser, mais se rapporte à la productivité marginale de tout facteur de production utilisé.

Mais ces perspectives doivent être fortement tempérées en raison des problèmes de durabilité. D'une part le changement climatique global fait peser une lourde menace qu'il serait nécessaire d'étudier plus en détail sur le plan de ses conséquences agronomiques. Toutefois les phénomènes sont complexes : ainsi par exemple l'Europe pourrait subir un refroidissement en raison de la perturbation du Gulf Stream et de la Dérive Nord-atlantique qui lui prolonge et qui réchauffe l'Europe occidentale y créant actuellement un climat beaucoup plus doux que celui de l'Amérique du Nord (Duplessy 1997). Par ailleurs la notion de durabilité ne recouvre pas seulement les aspects environnementaux, mais aussi les aspects socio-économiques. Ainsi une progression des rendements à moyen et long terme — si elle était recherchée eu égard à la demande mondiale — pourrait se heurter à divers facteurs, par exemple manque d'investissements dans la recherche agronomique ayant conduit à délaisser certaines investigations nécessaires à cet objectif, détérioration du potentiel productif des terres, peut-être déprofessionalisation des agriculteurs dans les pays riches (où ils seraient devenus plutôt des spéculateurs jouant sur les variations des cours ou la combinaison optimale des primes), déstructuration sociale en raison des phénomènes d'exclusion de certaines populations conduisant à une violence exacerbée, voire à des conflits. En effet comme le montrent les nombreuses interactions du schéma de l'introduction, le rendement est le résultat d'un processus social complexe, ce qui fait que finalement un déterminant paraît essentiel, la variable institutionnelle, c'est à dire notamment le fonctionnement des institutions sociales, économiques et politiques.

En définitive, à court terme la progression des rendements devrait se poursuivre encore pendant quelques années à un rythme assez soutenu, mais un peu moins fort que dans les trois décennies passées ; ensuite pendant quelques années le rythme pourrait s'inféchir, en particulier si le prix du blé stagne voire baisse et si les orientations de la PAC n'incitent pas à intensifier ou si certains facteurs limitants s'avèrent difficiles à lever. Par contre en cas de mauvaises récoltes aux USA et au Canada pour des raisons climatiques les prix pourraient flamber temporairement, ce qui inciterait à nouveau à accroître la production. A moyen et surtout long terme la demande sera probablement plus forte — mais de grandes inconnues existent en la matière — entraînant des prix plus soutenus. Les rendements du blé en France malgré leur haut niveau actuel pourraient encore augmenter, toutefois cela suppose des recherches importantes (faut-il réinvestissein nécessaires s'il y a crise des financements publics ?) et cela pourrait rencontrer non des limites biophysiques, mais des problèmes de durabilité : changement climatique global, coûts pour lever certains facteurs limitants comme le manque d'eau, crise économique et sociale...
Références bibliographiques

BONNY S., 1993 - Les déterminants de la baisse des investissements agricoles depuis 20 ans. Economie Rurale (216), juillet-août 1993, pp. 3-11

BONNY S., 1994 - Les possibilités d'un modèle de développement durable en agriculture : le cas de la France. Courrier de l'Environnement de l'INRA (23), novembre 1994, pp. 5-15

FAPRI 1997 - FAPRI 1997 World Agricultural Outlook. Iowa State University, University of Missouri-Columbia, Food and Agriculture Research Institute, Staff Report 2-97, Janvier 1997

Notes et études économiques n° 8, septembre 1998

SAULAS P., 1993 - Mise au point de la technique de mélange de variétés, pour une conduite du blé d'hiver à faible niveau d'intrants. Montpellier, ENSA, Mémoire d'ingénieur.

Notes et études économiques n° 8, septembre 1998