

N° 224 - Novembre 2025

La vulnérabilité des forêts aux perturbations naturelles

Les forêts sont de plus en plus menacées par les perturbations naturelles, exacerbées par le changement climatique. Cette note explore les risques croissants qui en découleront à l'avenir. Elle détaille les facteurs de vulnérabilité et les impacts environnementaux et économiques liés. Dans un contexte incertain, comprendre l'imbrication des différentes composantes du risque permet de prioriser les actions pouvant l'atténuer. La gestion proactive du combustible forestier ou la valorisation des bois endommagés post-tempête sont par exemple des mesures susceptibles de répondre à cet enjeu.

es forêts sont affectées par des perturbations dites « naturelles », biotiques (ex. pathogènes) ou abiotiques (ex. incendies). Leur survenue peut néanmoins être d'origine anthropique, comme c'est le cas par pour la majorité des feux en France. Le changement climatique intensifie ces perturbations et fait peser une menace grandissante sur les fonctions des forêts : production de bois, séquestration du carbone, réservoir de biodiversité, etc. La multiplication récente d'événements extrêmes, comme les incendies en France à l'été 2022 ou le feu ayant ravagé les forêts du département de l'Aude en août 2025, a renforcé la visibilité de ces perturbations dans le débat public. Une prise de conscience concernant leur rôle dans la baisse du puits de carbone a aussi eu lieu1.

Les concepts associés à la notion de « risque » sont nombreux, et chacun revêt un sens particulier. Cette note clarifie les éléments constitutifs des risques engendrés par les perturbations naturelles en forêt et les illustre de cas concrets concernant l'Europe (dont la France) et les États-Unis.

La première partie définit les composantes du risque (aléa, enjeu, vulnérabilité) et présente des tendances d'évolution future de l'aléa pour les principaux agents perturbateurs. Dans un deuxième temps sont passées en revue certaines conséquences environnementales et économiques des perturbations actuelles et à venir. Enfin sont décrits des exemples de pratiques permettant d'atténuer la vulnérabilité, via la gestion forestière ou des solutions organisationnelles.

1 - Aléa et vulnérabilité : deux composantes majeures des risques liés au changement climatique en forêt

Le risque, une notion composite

Le risque est un terme polysémique, défini par le Groupe d'experts intergouvernemental sur l'évolution du climat comme un potentiel de conséquences négatives pour un système auquel certaines valeurs et objectifs sont associés². Il s'agit d'une notion composite, résultant de la rencontre de trois composantes : un aléa, un élément exposé à cet aléa (ou enjeu) et sa vulnérabilité. L'aléa correspond au phénomène physique capable d'engendrer un préjudice. La notion recouvre à la fois les caractéristiques de l'évènement (ex. vitesse du vent, surface brûlée) mais aussi sa probabilité d'occurrence. Les aléas qui correspondent à des événements ponctuels (ex. incendie, tempête) provoquent une mortalité catastrophique, c'est-à-dire soudaine et massive, dans les peuplements forestiers. D'autres ont des impacts plus diffus. C'est le cas des sécheresses, qui correspondent à des périodes d'anomalies thermiques et/ou pluviométriques par rapport aux références passées.

L'élément exposé ici est l'écosystème forestier, qui possède des valeurs d'usage et de non-usage pour la société et fournit des services écosystémiques (ex. production de bois, aménités paysagères). L'enjeu correspond au bon fonctionnement écosystémique de la forêt. Indépendamment de son degré d'exposition, autrement dit de présence dans un espace, une forêt est caractérisée par un certain niveau de vulnérabilité, c'est-à-dire une prédisposition à être négativement impactée. Elle peut être vulnérable en raison de sa prédisposition à subir des dommages (sensibilité) ou de sa faible

Figure 1 - Décomposition du concept de risque

Lecture : le risque émerge à la rencontre d'un aléa (hazard) qui affecte un élément exposé doté d'un certain niveau de vulnérabilité.

Source: IPCC, 2022, <u>Climate Change 2022:</u> <u>Impacts, Adaptation and Vulnerability</u>

capacité d'ajustement et de récupération aux dommages subis (*capacité adaptative*).

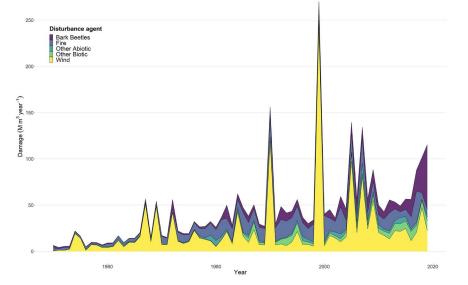
La vulnérabilité peut être *intrinsèque*, donc liée aux traits physiologiques des arbres, à la composition et à la structure des peuplements, etc.³. Par exemple, certaines essences sont

^{1.} Secrétariat général à la planification écologique, 2023, La planification écologique pour la forêt : principaux enjeux et leviers.

^{2.} IPCC, 2022, *Climate Change 2022: Impacts, Adaptation and Vulnerability*, Cambridge University Press.

^{3.} Lecina-Diaz J. et al., 2021, "Characterizing forest vulnerability and risk to climate-change hazards", Frontiers in Ecology and the Environment.

plus résistantes aux incendies en raison d'une écorce plus épaisse, ou davantage adaptées à une récupération rapide, par rejet (ex. chênes) ou via des banques de graines (ex. pin d'Alep). À l'inverse, une forêt avec une forte présence de combustible (ex. sous-étage dense) est plus propice aux incendies de forte intensité. La vulnérabilité des forêts est aussi de nature extrinsèque, liée à la gestion forestière, à l'aménagement du territoire, aux usages, etc. Ainsi, la présence de routes rend les forêts plus aisément accessibles pour la prévention et la lutte, mais aussi plus exposées à un départ de feu causé par l'humain. Et l'existence d'un système de surveillance permet de détecter les invasions de pathogènes plus précocement.


Les aléas climatiques en forêt s'intensifient

Le changement climatique augmente le risque *via* une aggravation des régimes de perturbations (composante *aléa*), autrement dit une modification de la fréquence, de l'intensité et de la saisonnalité des événements perturbateurs et des zones qu'ils affectent. Ces effets peuvent être directs, par exemple lorsque le stress hydrique dû au manque de pluie et à l'augmentation de la durée et de l'intensité des épisodes de fortes températures affaiblit les arbres. Ils peuvent aussi être indirects, notamment lorsque de nouveaux pathogènes migrent et deviennent viables (ex. chenille processionnaire du pin) ou que des espèces endémiques passent en phase épidémique (ex. scolyte typographe de l'épicéa).

Entre les périodes 1950-2000 et 2001-2019, les dégâts causés par les perturbations naturelles ont augmenté de 17 % en Europe. Les tempêtes sont responsables de 46 % des dommages sur l'ensemble des deux périodes, suivies des feux (24 %), des scolytes (17 %), des autres agents biotiques (8 %, par ex. des maladies dont la chalarose du frêne et l'encre du châtaignier) et abiotiques (8 %, ex. sécheresse, neige). La hausse des dommages est particulièrement marquée récemment pour les incendies et les scolytes (figure 2). Ces derniers ont été à l'origine de 50 % de la récolte en Allemagne en 2021. En France, en Bourgogne-Franche-Comté, 30 000 ha de forêts résineuses contenant des épicéas (soit 18 % du total régional) ont été détruits ou prélevés entre 2018 à 2022 en raison des attaques de scolytes. Depuis 2023, la crise y affecte l'ensemble des classes altitudinales du massif du Jura, y compris au-delà de 1 000 m4. Les sécheresses ont quant à elles touché 0,5 Mha de forêts de 1987 à 2016 en Europe, et 4 des 5 évènements les plus intenses se sont déroulés après 20005.

L'Europe méridionale pourrait, au cours du xxiº siècle, subir une hausse de 40 à 100 % de la surface brûlée annuelle. La saison des incendies pourrait y augmenter de 20 jours et la probabilité d'occurrence de « mégafeux » être décuplée^{6,7}. Les régions tempérées et boréales seraient aussi affectées, dans une moindre mesure. En France, la hausse du risque incendie devrait être particulièrement forte dans l'Ouest et sur le pourtour méditerranéen⁸. Pour un réchauffement de + 4 °C en fin de siècle, la

Figure 2 - Dommages annuels dus aux perturbations naturelles en forêt en Europe, de 1950 à 2019

Source: Patacca M. et al. 2022, "Significant increase in natural disturbance impacts on European forests since 1950", Global Change Biology

saison des incendies durerait 131 jours et les feux toucheraient 67 % du quart sud-est, contre 78 jours et 28 % actuellement⁹.

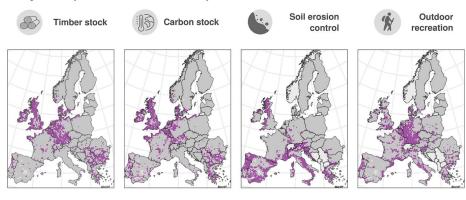
Le changement climatique accélère le cycle de développement des pathogènes et provoque une extension de la zone qui leur est propice. L'épidémie principale en cours est celle du scolyte typographe de l'épicéa commun. En Europe de l'ouest, les dégâts causés pourraient être six fois plus élevés sur la période 2021-2030 par rapport à 1971-2010¹⁰.

Les tempêtes sont des événements rares et difficilement modélisables. Le changement climatique pourrait augmenter la vitesse des vents et rendre plus courants les évènements extrêmes. En Europe centrale, une tempête habituellement séculaire pourrait voir son temps de retour ramené à 70 ans environ d'ici 2100¹¹.

Les différents aléas interagissent entre eux. Par exemple, une forêt endommagée par une tempête est plus sensible aux pathogènes et une sécheresse rend plus probables les incendies. Ces interactions devraient se renforcer sous l'effet du changement climatique, notamment en ce qui concerne les risques biotiques, rendant nécessaire l'adoption d'une perspective « multirisques »¹².

2-Les aléas naturels affectent les fonctions de la forêt

Des interactions écologiques complexes


La survenue d'un aléa modifie directement la structure et la composition de la forêt, ainsi que les services écosystémiques qu'elle fournit. Sur le court terme, de nombreux arbres peuvent être détruits ou endommagés, et les cycles biogéochimiques et les habitats perturbés. La phase de réorganisation qui suit immédiatement l'aléa est cruciale¹³, puisque c'est le moment où s'établissent les communautés qui composeront la forêt future. Plusieurs devenirs sont possibles

pour celle-ci, allant de la résilience totale (composition et structure identiques) à la transition vers un état non-forestier (en cas d'aléa majeur et/ou répété), en passant par des états intermédiaires.

La biodiversité est affectée *via* les impacts des perturbations sur les habitats. Une zone affectée peut voir sa richesse spécifique (nombre d'espèces présentes) augmenter, diminuer ou rester stable¹⁴. Cette relation au sens ambigu varie selon les espèces et la dynamique des perturbations. Les impacts négatifs concernent souvent les espèces privilégiant les canopées fermées (ex. lichens), alors que d'autres sont dépendantes des perturbations pour sur-

- 4. Département de la santé des forêts, 2024, <u>Situation de l'épicéa commun liée aux attaques de scolytes en région Bourgogne-Franche-Comté</u>. Clerget, V., 2024, <u>Renouvellement forestier suite à la crise du scolyte typographe en Bourgogne-Franche-Comté</u>.
- 5. Senf C., *et al.*, 2020, "Excess forest mortality is consistently linked to drought across Europe", *Nature Communications*.
- 6. Bowman D. *et al.*, 2020, "<u>Vegetation fires in the Anthropocene</u>", *Nature Reviews Earth & Environment.*
- 7. El Garroussi S., et al., 2024, "Europe faces up to tenfold increase in extreme fires in a warming climate", npj Climate and Atmospheric Science.
- 8. Fargeon H., *et al.*, 2020, "<u>Projections of fire danger under climate change over France: where do the greatest uncertainties lie?</u>", *Climatic Change*.
- 9. Pimont F., et al., 2022, "Future expansion, seasonal lengthening and intensification of fire activity under climate change in southeastern France", International journal of wildland fire.
- 10. Hlásny T., *et al.*, 2021, "Bark Beetle Outbreaks in Europe: State of Knowledge and Ways Forward for Management", *Current Forestry Reports*.
- 11. Outten S., Sobolowski, S., 2021, "Extreme wind projections over Europe from the Euro-CORDEX regional climate models", Weather and Climate Extremes.
- 12. Seidl R. *et al.*, 2017, "<u>Forest disturbances under climate change</u>", *Nature Climate Change*.
- 13. Seidl R., Turner, M. G., 2022, "Post-disturbance reorganization of forest ecosystems in a changing world", Proceedings of the National Academy of Sciences.

Figure 3 - Zones concernées par un fort risque de pertes de services écosystémiques forestiers en Europe

Lecture : les zones en couleur correspondent aux zones les plus concernées (au-delà du 8° décile) par le risque pesant sur le service écosystémique considéré. D'autres zones sont également concernées, mais le niveau de risque y est plus faible.

Source: Lecina Diaz, J., et al., 2024, "Ecosystem services at risk from disturbance in Europe's forests", Global Change Biology

Figure 4 - Décomposition de la baisse du puits de carbone forestier entre 2010 et 2020

vivre et s'installent dans les milieux ouverts. Les niveaux de biodiversité les plus élevés, à l'échelle du paysage, seraient observés pour des perturbations de sévérité et de taille moyennes. À l'inverse, les événements extrêmes seraient globalement néfastes en raison de leur tendance à homogénéiser les habitats sur de grandes surfaces. La disparition d'une espèce particulière peut aussi être provoquée par certains aléas (ex. pathogène affectant une essence spécifique, comme la chalarose du frêne).

Une méta-analyse globale a démontré un impact négatif des perturbations sur la plupart des services écosystémiques, en particulier la séquestration de carbone. La qualité des sols et du contenu organique de ces derniers, la production de bois et la qualité de l'eau sont également affectées¹⁵. Ainsi, les incendies augmentent l'érosion du sol, diminuent la valeur récréative des forêts, et provoquent des émissions de carbone et de composés pouvant affecter la santé humaine. Selon une estimation récente, les trois agents perturbateurs majoritaires en Europe (tempêtes, incendies, scolytes)

menacent la provision de services écosystémiques forestiers de 10,4 à 12,3 %, à l'heure actuelle. Au total, 20 millions d'hectares de forêt (9,7 % de la surface totale) verraient leur multifonctionnalité menacée, notamment en Europe centrale et de l'ouest (figure 3).

Depuis les pertes de bois jusqu'aux impacts économiques et climatiques

Les aléas naturels font peser un risque sur la production et l'industrie du bois. Une crise majeure, telle une tempête, provoque à court terme un afflux sur le marché de bois de moindre qualité, diminuant les prix et perturbant le marché¹¹. Dans un second temps, les dommages causés entraînent une réduction de l'offre de bois et une pression sur les prix (qui augmentent) pouvant durer plusieurs décennies. En République tchèque, la crise des scolytes de 2018 a provoqué une hausse de 5,3 à 18 Mm³ (+ 340 %) des quantités de bois endommagés récupérées par rapport à 2017, engendrant une chute des prix du bois de 55 €/m³ à 15 €/m³ (-73 %)¹¹.

Les perturbations impactent aussi la valeur du foncier forestier. Celle-ci a par exemple diminué de 10 % en moyenne entre 1984-2003 et 2001-2020 dans les États de l'ouest américain, en raison de la multiplication des feux et des sécheresses. Les zones n'ayant pas brûlé sont aussi concernées, dans une moindre mesure, *via* une modification de la perception du risque par les acheteurs¹⁸.

Les aléas font peser un risque de non-permanence sur les stocks de carbone mobilisés pour lutter contre le changement climatique. En Europe, à l'avenir, les pertes de carbone liées aux perturbations naturelles pourraient être du même ordre de grandeur que les gains espérés d'une gestion forestière cherchant à atténuer le changement climatique¹⁹. En raison de l'incertitude inhérente aux phénomènes météorologiques, le puits de carbone forestier peut fortement varier d'une année à l'autre²⁰. Par exemple, la seule tempête Vaia a réduit le puits de carbone forestier de l'Italie de 4 % en 2018²¹. Valoriser les bois endommagés par l'industrie permet néanmoins de transférer une partie du carbone vers la filière aval, atténuant partiellement ces conséquences.

L'introduction de nouveaux ravageurs pourrait provoquer une dégradation supplémentaire du puits de carbone. Seidl et al.22 estiment à 10 % la part du carbone forestier européen qui serait exposée à 5 nouveaux ravageurs majeurs en Europe, d'ici à 2080 sous l'hypothèse d'un réchauffement élevé (RCP 8.5). Une invasion par ceux-ci provoquerait une hausse des pertes de carbone dues aux aléas naturels allant de + 2,3 % (pour le chancre du hêtre) à + 50 % (pour le longicorne asiatique, qui attaque plusieurs espèces de feuillus). Au-delà de la stricte mortalité due aux aléas, la baisse du puits de carbone peut aussi être attribuée à la perte d'activité photosynthétique par les arbres dépérissant (figure 4).

Communications.

^{14.} Viljur M. *et al.*, 2022, "The effect of natural disturbances on forest biodiversity: an ecological synthesis", *Biological Reviews*.

^{15.} Thom D., Seidl R, 2016, "Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests", Biological Reviews.

^{16.} Johnston C. M., *et al.*, 2024, "<u>Unraveling the impacts:</u> How extreme weather events disrupt wood product markets", *Earth's Future.*

^{17.} Hlásny T., et al., 2019, "Living with bark beetles: impacts, outlook and management options", European Forest Institute.

^{18.} Wang Y., Lewis D. J., 2024, "Wildfires and climate change have lowered the economic value of western US forests by altering risk expectations", Journal of Environmental Economics and Management.

^{19.} Seidl R., et al., 2014, "Increasing forest disturbances in Europe and their impact on carbon storage", Nature climate change.

^{20.} Pilli R., et al., 2016, "Modelling forest carbon stock changes as affected by harvest and natural disturbances. II. EU-level analysis", Carbon balance and management.

21. Pilli R., et al., 2021, "Combined effects of natural disturbances and management on forest carbon sequestration: the case of Vaia storm in Italy", Annals of Forest Science.

22. Seidl R., et al., 2018, "Invasive alien pests threaten the carbon stored in Europe's forests", Nature

3 - Diminuer la vulnérabilité pour atténuer le risque

Si une action directe sur l'aléa est souvent difficile, le risque peut être atténué en réduisant la vulnérabilité des forêts exposées. Des interventions à différents niveaux sont possibles. Deux exemples en sont présentés ici à titre d'illustrations: la gestion du combustible et la valorisation des bois endommagés. De nombreuses autres mesures, que nous ne développons pas, peuvent aussi concourir à la réduction de la vulnérabilité: diversification de la composition et de la structure des forêts, surveillance renforcée, sensibilisation des parties prenantes locales à la « culture du risque », etc.

Gérer le combustible en forêt pour atténuer le risque d'incendies

En forêt, la présence de combustible au niveau du sous-étage (ex. végétation basse, branches) aggrave le risque d'incendie. Elle augmente la probabilité de départs de feux et leur capacité à s'intensifier et se propager. Lorsque le combustible est sec et continu, le risque est d'autant plus important.

Retirer cette végétation de manière préventive diminue la vulnérabilité de la forêt, affectant notamment sa sensibilité tout en ayant aussi un effet sur la composante aléa. Il s'agit, par exemple, de l'objectif des obligations légales de débroussaillement. Celles-ci concernent, dans 43 départements français, les terrains situés à moins de 200 m des massifs forestiers, sur un rayon de 50 m autour des constructions. Ces zones d'interface sont particulièrement vulnérables, en raison du fort potentiel de départ de feu et de la présence de bâti, de personnes et d'activités économiques. Des mesures similaires existent ailleurs, par exemple en Catalogne. Dans certaines régions, le pâturage est utilisé pour réduire la présence de combustible, via un paiement pour service environnemental²³.

Une étude récente a évalué l'impact de la gestion du combustible forestier en Californie, où les incendies ont causé des dommages annuels moyens estimés à 117 milliards de dollars (Md\$) entre 2017 et 2021²⁴. D'ici 2050, l'augmentation de l'intensité des incendies pourrait être compensée par le traitement annuel de 240000 hectares. L'objectif actuel est de traiter 400000 hectares, ce qui éviterait des pertes de 10,9 Md\$ pour un coût annuel estimé à 3 Md\$, tandis que chaque année de retard dans la mise en œuvre de cet objectif entraînerait 4 Md\$ de pertes. Toutefois, selon les économistes auteurs de l'étude, la surface optimale à traiter pour maximiser les bénéfices serait de 1,6 million d'hectares par an, 4 fois plus que la cible actuelle.

Le combustible peut aussi être brûlé volontairement de manière préventive. Le *brûlage dirigé* est une mesure de prévention qui réduit la charge de combustible pour empêcher la survenue d'un incendie. En France, il est planifié par l'État, les collectivités ou leurs mandataires, et réalisé par des professionnels. Cette pratique permet également de maintenir le bon état de certains écosystèmes. Autre solution, les *feux tactiques* et les *contre-feux*

sont des techniques de lutte mises en place pendant un incendie. Elles visent à le canaliser et à appuyer les personnels en charge de l'extinction.

Valoriser le bois endommagé pour atténuer les impacts économiques

Lorsqu'elles surviennent, les tempêtes engendrent un afflux soudain de bois endommagés. Les valoriser permet aux propriétaires de dégager du revenu, ensuite réinvesti dans la gestion forestière. Disposer de débouchés pour ces bois de crise permet d'améliorer la capacité adaptative des forêts. À l'inverse, laisser ces bois sur site augmente la susceptibilité de survenue d'une nouvelle crise (ex. maladie, départ de feu), augmentant la sensibilité (et donc la vulnérabilité) du peuplement à de potentiels aléas en cascade.

Suite à une crise majeure, la valorisation peut être coordonnée et aidée par l'État. Elle comporte principalement deux modalités : le stockage des bois en vue d'une transformation ultérieure sur place ; leur exportation vers d'autres régions²⁵. Ces interventions permettent de désengorger les marchés locaux et de lisser les impacts économiques négatifs (ex. chute des prix). Au préalable, un état des lieux des dommages doit être effectué afin de prioriser les opérations. Une intervention rapide est notamment nécessaire en cas de maladie, afin d'éviter sa propagation et la dégradation du bois. Pendant le stockage, l'état sanitaire des bois peut être stabilisé en les traitant une fois sortis de la forêt (traitement thermique, fumigation) et en assurant de bonnes conditions de stockage (ventilation, distance à la forêt, contact avec le sol).

Un plan de mobilisation des bois a été mis en place en France suite à la tempête Klaus (2009), qui a détruit 42,5 Mm³ de bois, principalement en Aquitaine. Il comportait des soutiens directs au stockage des bois (création et réhabilitation des aires) et au transport en dehors de la région, pour un total de 126 M€. *In fine*, 55 % des 29,5 Mm³ de bois récoltés post-tempête ont bénéficié d'aides directes. Une modélisation économique26 a démontré que ce plan avait favorisé le stockage (+ 25 %), accéléré et augmenté la valorisation des bois (+ 33 %), sans toutefois empêcher la chute des prix (-60 % sur le pin maritime). Sur 10 ans, le plan aurait généré un gain économique de 44 M€ pour la filière forêt-bois. Une stratégie encore plus axée sur le stockage aurait été davantage bénéfique mais aurait ralenti la remontée des prix, au détriment des producteurs locaux.

À l'avenir, plus de bois endommagés seront disponibles en raison de l'aggravation des régimes de perturbations. Une étude prospective récente²⁷ insiste sur l'importance d'anticiper cette dynamique, non seulement pour les aspects économiques évoqués précédemment, mais aussi pour maintenir le puits de carbone forestier. À l'amont, il sera nécessaire d'augmenter les récoltes pro-actives sur bois dépérissant et de les prioriser, les années de crise, par rapport aux récoltes classiques. À l'aval, les capacités de transformation et de stockage devront être augmentées. L'innovation sera aussi un facteur clé, afin de mieux valoriser les bois déclassés et de les diriger si possible vers des usages à longue

durée de vie (ex. construction), plus intéressants du point de vue climatique.

*

La vulnérabilité des forêts aux perturbations naturelles, exacerbée par le changement climatique, est un enjeu crucial pour la gestion des écosystèmes forestiers. Cette note a clarifié les composantes du risque, en distinguant l'aléa, la vulnérabilité et les enjeux associés aux forêts. Des exemples concrets montrent que celles-ci sont de plus en plus exposées à de multiples aléas, notamment en Europe, avec des effets variés sur les services écosystémiques, l'économie forestière et la biodiversité. Les stratégies d'adaptation, telles que la gestion du combustible et la valorisation des bois endommagés, peuvent limiter ces impacts en réduisant la vulnérabilité des forêts.

À l'avenir, le développement de l'approche multirisques et de pratiques de gestion proactives sera crucial. Pour ce faire, il sera nécessaire de s'appuyer sur des cadres conceptuels clairs afin de cibler de manière pertinente les différentes composantes du risque.

Des incertitudes persistent toutefois sur l'interaction complexe entre les différents aléas et l'ampleur des changements futurs. De nouvelles recherches sont nécessaires pour affiner nos connaissances, notamment quant aux impacts des événements extrêmes. D'autres éléments que les forêts sont exposés, et potentiellement vulnérables aux aléas abordés ici. Il s'agit notamment des populations (les incendies peuvent nuire à la santé *via* la pollution de l'air) et des infrastructures (de transport, de logement, etc.). Toute stratégie d'adaptation aux aléas « forestiers » doit donc être transversale, voir au-delà de la forêt et considérer ces multiples composantes.

Miguel Rivière Centre d'études et de prospective

- 23. Mauri E., Jankavić M., 2024, *Wildfire risk planning* and prevention *Innovations in the Mediterranean and* beyond, European Forest Institute.
- 24. Brown P., 2024, *Cost-effectiveness of large-scale fuel reduction for wildfire mitigation in California*, The Breakthrough Institute.
- 25. Gardiner B., *et al.*, 2013, *Living with storm damage to forests*, European Forest Institute.
- Caurla S., et al., 2015, "Store or export? An economic evaluation of financial compensation to forest sector after windstorm. The case of Hurricane Klaus", Forest Policy and Economics.
- Carbone 4, 2023, <u>Scénario de convergence de filière</u>, résumé exécutif.

Ministère de l'Agriculture, de l'Agro-alimentaire et de la Souveraineté alimentaire Secrétariat général

Service de la statistique et de la prospective Centre d'études et de prospective 3 rue Barbet de Jouy 75349 PARIS 07 SP

Sites Internet : www.agriculture.gouv.fr

Directeur de la publication : Vincent Marcus

Rédacteur en chef : Bruno Hérault Mel : bruno.herault@agriculture.gouv.fr Tél. : 0149558575

Composition : DESK (www.desk53.com.fr) Dépôt légal : À parution © 2025