Les apports des biotechnologies en sélection variétale pour faire face au changement climatique

Isabelle LITRICO-CHIARELLI Cheffe du département de Biologie et Amélioration des Plantes, INRAE

Les enjeux et les objectifs de l'amélioration des plantes face au changement climatique

Des tendances

[CO2] atmosphérique
Température
Sécheresse ...
...et des aléas

Adaptation au CC

Produire et stabiliser les productions en faibles intrants et face au changement climatique

Atténuation du CC

Impacter de façon positive l'environnement notamment en améliorant la séquestration du carbone

Les nouvelles pratiques
La génétique

Base de la sélection

Plusieurs cycle de sélection d'individus portant des traits/comportements d'intérêt

Série de croisements permettant de combiner les traits/comportements d'intérêt

Le processus de sélection est long (plusieurs années pour élaborer une nouvelle variété)

Efficacité de la sélection sur les allèles favorables aux QTL / gènes +++

Nécessite d'une diversité des traits/comportements d'intérêt
=> Intérêt de conserver et caractériser la diversité génétique des espèces
=> intérêt de créer de la diversité
De la sélection sur phénotype à la sélection sur génotype

Utilisation des marqueurs en sélection

La découverte des marqueurs moléculaires a révolutionné le travail du sélectionneur, son travail gagne en efficacité et en précision

Etude du déterminisme des caractères

Cartographies de gènes majeurs (ou régions du génome $=Q T L$) => effet fort sur la variation de caractères d'adaptation, de tolérance... => sélection plantes stades jeunes (voire des embryons non germés)

=> Sélection assistée par marqueurs (SAM)
Associations statistiques entre un marqueur moléculaire et un caractère

VARFNNF AGRICOIF

Les grandes approches de sélection assistée par marqueurs

Introgression de 4 QTL de résistance issus d'un parent « sauvage » par trois générations de back-cross assistées par marqueurs

La lignée obtenue après sélection était plus résistante que la lignée receveuse et avait le même rendement en fruits

Nombreux autres exemples dans la littérature (gènes majeurs)

LIMITES SAM Temps et coût pour les phénotypes facilement mesurables Efficacité faible pour des caractères à déterminisme complexe
=> beaucoup de QTL à effets individuels faibles

Lorsque de nombreux gènes ont des effets assez faibles
=> Construction de formules de prédiction avec des marqueurs sur l'ensemble du génome
=> Utilisation de tous les marqueurs comme prédicteurs

Une vraie révolution chez les animaux depuis plusieurs années: Bovins, volailles, porcs, caprins et ovins, poissons

Montée en puissance chez les plantes:
\checkmark Preuves de concept dans la littérature (soja, maïs, blé, colza, riz, tournesol,, tomate, fourragères...)

Yc. pour les réponses aux variables climatiques

Crop Science $-$
crop Breeding a Genetics © open nceen © ((1) () (3)
Genetic Gains in Grain Yield Through Genomic Selection in Eight Bi-parental Maize Populations under Drought Stress

Eist putishec. 01 January 2015 | hetps://dol. org/10.2135/cropsci2014.07.0460 | Cutions: 143
Efficacité sélection conventionnelle phénotypique << Sélection génomique sous contrainte hydrique
\checkmark De plus en plus d'applications en routine chez les semenciers

LES +

- Réduction du temps de sélection
- Meilleure précision
- Réduction des coûts de phénotypage
- Sélection possible aux stades précoces
- Prise en compte de la variabilité entre individus le long du génome

Nécessité d'une population de référence (phénotypage et génotypage) La population de sélection doit être génotypée
La population de sélection = même génération ou de descendants Effet de l'environnement et prise en compte du GxE à travailler

Progrès du génotypage toutes espèces et diminution des coûts Progrès du phénotypage haut débit
=> belles perspectives pour la Sélection Génomique

La sélection phénomique

\checkmark Même principe que la sélection génomique => prédictions
\checkmark Spectroscopie proche infrarouge Réflectance (proportion de lumière réfléchie par surface de matériau) / absorbance caractérise indirectement la composition moléculaire d'un échantillon
\checkmark Population de calibration/référence et population candidate à évaluer

\checkmark Non destructive et sélection précoce possible
Première mise en œuvre : Blé et Peuplier

Qualité des prédictions génomiques et phénomiques (blé tendre)

$>$ Qualité de prédiction en moyenne au moins aussi bonne que la sélection génomique > Approche validée sur de nombreuses espèces (céréales, plantes pérennes, arbres fruitiers et forestiers)
>Immédiatement disponible pour toutes les espèces (y compris orphelines)
$>$ Très abordable (\ll SG)
Mais spectres influencés par l'environnement

SAUVETAGE D'EMBRYONS INTERSPÉCLEF/QUES
 Reverse breeri-

New plant breeding techniques State-of-the-art and prospects for commercial development

HAPLODIP Edition des génomes (CRISPR/Cas9)

Cis-génèse / intra-génèse

Greffage (sur porte greffe OGM)

Transgenèse
ARN interférent

Origine de la diversité génétique

Mutations naturelles

Env. 10 cassures de l'ADN par cellule et par jour
Taux de mutation par génération : 1 toutes les 100 millions de bases

> l'instabilité génétique est vraie pour tous les types de semences et est à la base de la sélection variétale ou massale.

«la clé est la puissance de la sélection cumulative de l'homme: la nature donne variations successives; l'homme les ajoute dans certaines directions utiles pour lui »

Quelques limitations en Amélioration des plantes

Principe de l'amélioration des plantes:
Combiner ces mutations pour obtenir des variétés aux caractéristiques intéressantes
\checkmark Croisements interspécifiques
\checkmark Mutations spontanées
\checkmark Mutations induites

variété A

$\quad \begin{gathered}\text { Tomate } \\ \text { Haute teneur en vitamine C, } \\ \end{gathered} 1977$

> Difficulté des croisements interspécifiques
>La barrière de la compatibilité sexuelle
\Rightarrow Risque d'introgression de caractères indésirables dans la nouvelle variété
> Le plan de sélection est contrôlé par la durée du cycle végétatif de la plante

Edition des génomes

Modification ciblée des gènes

- Issue de travaux chez les micro-organismes
- Utilisation récente chez les végétaux et les animaux (2012-2013)

CRISPR/Cas9

- Nucléase ciblée parmi d'autres (e.g., TALEN, Zinc finger)
- Plus facile à mettre en œuvre que les autres
- Permet de modifier n'importe quel gène dans le génome
- A la portée de la majorité des laboratoires

Eonvenener Edition des génomes par CRISPR릉 CAS9

Deux étapes

Etape 1- Coupure de l'ADN à un site choisi ARN guide pour cibler le site de coupure dans le génome + nucléase (Cas9) pour couper les deux brins de l'ADN

Etape 2- Réparation de la coupure par la machinerie cellulaire

3 possibilités:

- Sans matrice de réparation
\Rightarrow Inactivation par insertion/délétion (SDN1)
- Avec matrice de réparation
\Rightarrow Modification ponctuelle du gène (SDN2)
\Rightarrow Insertion d'un fragment d'ADN (SDN3)

Réparation aléatoire de la cassure avec délétion ou insertion SDN1 inactiver un gène

Modification d'un gène à une ou

Intégration ciblée d'un transgène SDN3: Landing pad

Amélioration par édition du génome

> Possibilité d'obtenir une plante dont un gène a été éditée (plante B) qui :

- Contient une mutation qui pourrait être présente dans le pool génétique de l'espèce
- Ne peut pas être distinguée phénotypiquement ni moléculairement d'une variété conventionnelle (plante C)

GOUVERNEMENT nexim

Potentiel pour l'innovation variétale

Résistance aux maladies
 Résistance chancre bactérien des agrumes
Raccourcissement du cycle de sélection

Espèces pérennes

Exemples issus des laboratoires de recherche
 de stress hydrique

Modification du promoteur du gène ARGOS8 via SDN2
> Meilleur rendement en grain en condition de stress hydrique
\checkmark Annule le risque d'introgression de caractères indésirables dans la nouvelle variété => Modification du gène cible uniquement
\checkmark Contourne les difficultés des croisements / barrière de la compatibilité sexuelle
 => Possibilité d'aller chercher des gènes d'intérêt chez d'autres espèces
\checkmark Gains pour la rapidité d'assemblage des allèles/gènes d'intérêt
\checkmark Opportunité pour augmenter la diversité génétique en l'absence de variabilité => concept de «rewilding »

Mais

\checkmark Amélioration de la techno a conduire - espèces récalcitrantes
\checkmark Besoin de connaissances du génome pour modification du/des caractères d'intérêt
\checkmark Off-targets = mutations hors cible : Prédictibles, faibles, éliminables ?
\checkmark Règlementation
\rightarrow Prise en compte du caractère apporté à la nouvelle variété et non de la technologie d'obtention de ce nouveau caractère? (Canada, USA)

Les biotechnologies pour le changement climatique

Des outils complémentaires

Articuler les approches

Adaptation au CC

Produire et stabiliser les productions en faibles intrants et face au changement climatique

Tolérance/résistance des plantes Efficience acquisition/utilisation de l'eau
Précocité d'installation et floraison Plasticité
Aptitude à l'association et optimisation des traits pour les couverts diversifiés
Traits d'interaction plantemicrobiote ...

Atténuation du CC

Impacter positivement l'environnement notamment en améliorant la séquestration du carbone

Pérennité, Ratio biomasse végétative/racinaire, Architecture et profondeur d'enracinement, composition biochimique des parties végétatives ...

CAPITALISER SUR LES CONNAISSANCES ACQUISES
CONTINUER D'ACQUERIR DES CONNAISSANCES SUR LES TRAITS ET LES GENOMES CONTINUER D'AMELIORER LES METHODOLOGIES

